STUDENT GUIDE

Name

School

Grade

UC_S03016
JV InvenTeams™ - U Control

Table of Contents

Activity Overview

Introduction to JV InvenTeams ... P4
Summary and Meeting Synopses .. P12

Meetings

1 Invention Introduction ... 1
2 Introduction to Simple Machines ... 9
3 Build a Door ... 25
4 Motors 101 ... 39
5 Controlling a Motor ... 51
6 Final Build .. 69
7 Invention Extension .. 81
Welcome to JV InvenTeams, where students develop skills in science, technology, engineering, and math (STEM) through fun, invention-based design activities and challenges.

ABOUT LEMELSON-MIT

The Lemelson-MIT Program (https://lemelson.mit.edu) is dedicated to honoring those who have helped improve our lives through invention. The Program was established in 1994 at the Massachusetts Institute of Technology (MIT), by one of the world’s most prolific inventors, Jerome Lemelson (1923-1997), and his wife, Dorothy. It is funded by The Lemelson Foundation and administered by MIT’s School of Engineering. The Lemelson-MIT Program recognizes outstanding inventors, encourages sustainable new solutions to real-world problems, and enables and inspires young people to pursue creative lives and careers through invention.

The Lemelson-MIT Program encourages great inventors through various outreach programs such as InvenTeams (https://lemelson.mit.edu/inventeams), a national grants initiative for inventive high school students who have a strong foundation in scientific and technical skills. InvenTeams are teams of high school students, teachers, and mentors that receive grants of up to $10,000 to invent technological solutions to real-world problems. The Lemelson-MIT Program developed JV InvenTeams in order to reach slightly younger high school students and provide them an introduction to inventive thinking and doing.

About JV InvenTeams

The goal of JV InvenTeams is to cultivate new ways of thinking and develop technical skills for students with limited access to hands-on STEM enrichment opportunities. Through prescribed activities, students will add to their own “toolkits” of minds-on knowledge and hands-on skills while having fun!

Students will learn how to identify a need in their lives or in the world around them and to develop their own invention after completing the main activity in each unit. They will pull from their expanding toolkit to come up with solutions.

JV INVENTEAM ACTIVITY GUIDE COMPONENTS

Each unit of JV InvenTeams activities is presented in the same format. The Educator Guide includes specific notes and segments, while the student version is more streamlined and includes working space for the students. The educator may decide how much of the information should be shared with the students and in what manner – e.g., read out loud or individually. Each meeting within the unit is estimated to take between 1.5 and 2 hours to complete.

Each group of young people will be different, so the pace of each unit is up to the educator. Know that there are numerous resources to balance the unit to meet your needs. Some may find that breaking units into a couple of sessions will allow the think-time needed for your group. Others may want to streamline items and skip some of the videos.
Each unit has the following in the first pages:

- Title page with summary of the unit and learning objectives
- Summary of each meeting within the unit
- Master consumable materials and tools lists

Each meeting within the unit includes the following:

- “Toolkit” of hands-on and minds-on skills to be learned
- List of tools and materials
- Procedure
- Key terms
- Safety message(s)
- Video clips
- Instructions with step-by-step procedural notes
- Pop-outs that include any of the following: historical connections, Inventor/Invention Spotlights, related patents, Extend the Learning, High School Connections, and College Connections
- Indicators of a successful meeting
- Student Self-Assessments as exit slips

INVENTOR’S TOOLKIT

HANSD-ON
- General shop safety
- Recording temperature changes

MINDS-ON
- Evaporation
- Thermal conductors and insulators

KEY TERMS

Cold (n): The absence of heat energy; “coldness” is a subjective term that refers to people’s perception of low temperature, or low heat energy.

Conduction (n): The transfer of heat within an object or between objects in contact with each other.

Convection (n): The transfer of heat by the circulation or movement of the heated parts of a liquid or gas.

INVENTOR SPOTLIGHT

In 1902, mechanical engineer Willis Carrier patented the air conditioner, a device he originally invented to solve a problem facing a paper printing plant in Brooklyn, New York. Read more about his invention—and how the invention of air conditioning helped expand Southern cities such as Houston and Atlanta.

SAFETY

Wear protective gloves and safety glasses for this activity. Avoid breathing in the release agent spray. Use it in a well-ventilated room or outdoors.
You may ask, “Why should I invent?” Here are some of the reasons you can share during the first meeting.Invention…

- solves world problems like finding clean sources of energy and treating unsafe water;
- helps people;
- allows people to explore a creative process that often involves teamwork;
- provides fulfilling careers: inventors are often scientists and engineers who improve areas of health, energy, food and transportation;
- can also lead to a high-paying career with many job opportunities as an engineer or scientist; and
- is fun!

Group size

JV InvenTeams is recommended for approximately 20 students in Grades 7, 8, 9 and 10. Most activities require students to work in teams of four.

Partnerships

The Lemelson-MIT Program encourages participating schools to seek community partnerships to sustain JV InvenTeams. Partnership opportunities include:

- Science and technology museums, to provide direct mentoring;
- Local technology and engineering companies, to provide funding for future extension ideas, materials, or mentors;
- Local universities or colleges, to provide collegiate mentors; and
- Hardware stores, to provide tools or materials.

Flexibility

JV InvenTeams has built flexibility into the program to meet the needs of educators, school systems, and grants-based clubs and organizations.

Following are some examples:

- Each unit is designed to stand on its own. Educators can lead one unit, a few units or all of the units.
- The program can be held in any educational setting with a science or technology educator facilitating the activities.
- Each unit has approximately 6 meetings of 1.5 - 2 hours duration.
- Meetings can take place multiple times a week or once a week.
INVENTIVE THINKING

Both educators and students will develop an understanding of the invention process as you navigate through JV InvenTeams. This new way of thinking, part of the minds-on toolkit, may take some time to adopt since learning within the school day increasingly focuses on standardized tests of academic knowledge. Invention is a variable, non-linear process. JV InvenTeams introduces the curiosity and creativity of recognizing problems and addressing them with novel solutions. You will not need to worry about knowing the “right” answer since there are countless possibilities. Experiencing failure is part of the invention process.

Inventing is creating something new that is useful or helpful, by means of one’s own investigation, experimentation, and thinking. An invention is the product of the inventing process. It can be a device, a material, a system, and even a plant. Invention refers to a new physical thing made possible by technology for the purposes of JV InvenTeams. Inventive thinking challenges what people come to expect or anticipate. Revolutionary inventions, known as macro-inventions, make a huge impact on the way we live. Examples include the internal-combustion engine for the automobile and the integrated circuit for consumer electronics. Most inventions are micro-inventions, or adaptations that grow from larger-scale inventions. This means making an existing product faster, stronger, cheaper, easier, safer, more efficient, or more useful.

User-Centric

The key to inventing is to make sure the invention is user-centric. This means that students need to think about and understand problems affecting real people and their specific needs. Researching the unique characteristics and needs of the user is essential to coming up with an effective design – as is working directly with them! Students will develop empathy for the beneficiary during the process.

An example of this would be a student noticing that his or her grandmother has difficulty moving around the house in her slippers, due to slippery floors.

The student should investigate by first asking his or her grandmother:

- Do you wish your slippers had a better grip?
- What parts of the slipper do you like? What parts would you change? Why?

After learning from the user, the student can further investigate.

Questions he or she might ask include the following:

- Does the solution lie in changing the floors or the footwear?
- How can I change her slippers to make the grip better?
- Is there another product on the market that provides the ease and comfort of slippers with the safety features of shoes with more grip?

These questions will inform research and allow the student to develop meaningful solutions.
Deciding on a Good Problem to Solve

Identifying a good problem to solve can be challenging, but it is just like any other skill: it becomes easier with practice. Therefore, at the beginning of each unit in JV InvenTeams, students will be given a problem or scenario that requires devising an original solution. Coming up with solutions to problems can be difficult at first, but students will gain confidence in generating new ideas over time. One way to accomplish this is through transgressive thinking – applying flexible or “out of the box” thinking in one area to another. The SCAMPER technique is a good technique to start with because it provides a framework to come up with solutions.

SCAMPER

The SCAMPER brainstorming technique was developed by Bob Eberle and published in a book by the same title. SCAMPER is based on the notion that something new can be modified from something that already exists. Each letter in the acronym represents a different way you can mentally view the characteristics of the challenge. It’s a “mash-up” of disparate things to conceive something new.

- **S** = Substitute *(playing basketball with a softball)*
- **C** = Combine *(toothbrush combined with a pencil to create a new product)*
- **A** = Adapt *(how would you eat your spaghetti without a utensil?)*
- **M** = Magnify *(how would your chair function if its legs were wider and longer?)*
- **P** = Put to Other Uses *(could your fork be used as a comb?)*
- **E** = Eliminate *(could you play tennis without a racket?)*
- **R** = Rearrange *(what if the laces of a shoe were placed on the bottom and not the top?)*

The SCAMPER technique involves the students first stating the problem they would like to solve, which defines the challenge. Then it’s a matter of asking questions, using SCAMPER to guide the students. No idea is a “good” or “bad” idea at this point.

DOCUMENTATION

Students should be encouraged to document their progress along the way. This includes saving sketches, designs, research data, graphs, images, and early prototypes. Most of this work, with the exception of the actual prototypes, can be compiled in the student guides. Students should routinely review their guide, adapting what they have learned and experienced to new challenges.
PATENTS

Since this program is all about invention, it is important that educators and students familiarize themselves with the United States laws that protect the intellectual property of inventors.

A patent is one type of intellectual property that can be legally protected through the U.S. Patent and Trademark Office (USPTO). The other types of intellectual property are trademarks and copyrights. A trademark includes any word, name, or symbol used to distinguish one manufacturer from another (e.g., brand name). Copyrights are recorded with the U.S. Copyright Office in the Library of Congress for original authored works like books and music.

According to the U.S. Patent and Trademark Office, patents provide legal protection to inventors’ intellectual property by excluding others from profiting from their property in the U.S. for a specific amount of time, in exchange for the inventors’ disclosure of their idea according to the criteria for granting a patent. There are three different types of patents. Utility patents are granted to inventors who discover a new and useful process, machine, article of manufacture, or a new and useful improvement. Design patents are granted to those who invent a new, original, and ornamental design for an article of manufacture. Finally, a plant patent is granted to an inventor who invents a new variety of plant. The basic components of a U.S. patent are: patent number, title, inventors, assignee (optional transfer of intellectual property to a company or other individual), abstract (short overview of invention), drawings, description (technical details), and claims (legal information).

To learn more about the patent process, visit: http://uspto.gov. Students will be required to search patents to ensure that their idea is unique. Patent searches can be done through Google Patents and Free Patents Online. Both have easier search functions than the U.S. Patent and Trademark Office.

Jerome Lemelson, founder of The Lemelson Foundation, had a productive life as an inventor, holding more than 600 patents. He was awarded his first patent in 1953 for a toy cap, and spent the next 45 years coming up with inventions that led to products such as bar code readers, automatic teller machines, cordless phones, cassette players, fax machines, machine vision, and personal computers.

It is important to keep in mind that not all inventions are patented. Some inventors purposefully do not seek a patent with the idea that their inventions are immediately and widely available. An example is open source software, which allows anyone to use the software without paying a fee.
This openness can spur further invention since anyone can access it and make adaptations. In spite of the changes in patent law through the Innovation Act of 2013, students should adopt the habit of recording and dating their work, including early sketches and research. This practice will be useful for future science exploration and invention. To learn more, visit: https://govtrack.us/congress/bills/113/hr3309.
UNIT SUMMARY FOR STUDENT

You will create a mechanical door opener in U Control. You will learn about simple machines and how engineers integrate them into mechanical systems in new, inventive ways. You will think about existing mechanical and automatic door opener designs and consider the users and needs these designs meet. You will consider new users and new designs to fit their needs. You will cut and assemble a door out of foam insulation board. You will then learn about motors and motor control in Meetings 4 and 5. You will understand what a circuit is, and how to create a circuit using a breadboard to control a motor’s motion. Finally, you will construct their mechanical door opener by attaching the motor, the breadboard, and the control arms to the door to make the door opener. You will consider improvements on the design as part of the prototyping process.

You will gain both minds-on and hands-on skills in U Control to expand their toolkit. Minds-on skills include understanding machines and mechanical systems, general motor science, electricity and circuits, and the prototyping process. Hands-on skills include general carpentry skills, using a utility knife to cut foam insulation board, cutting and stripping wire, and breadboarding to create circuits. You will learn what it means to be inventive thinkers and will practice inventive thinking as they progress through the unit.

LEARNING PRINCIPLES
▶ Mechanical Systems
▶ Motor Science
▶ Electricity and Circuits
▶ Prototyping
MEETING SYNOPSIS

1 Invention Introduction
Do warm-up activities and discuss invention. Play “Four Corners” to determine your strengths for team assignment.

2 Introduction to Simple Machines
Learn about the three main types of mechanized door openers and how they work to fill users’ needs. You will complete problem/solution charts to develop an understanding of the design process in invention.

3 Build a Door
Demonstrate an understanding of screws as simple machines and what foam insulation board is. You will learn how to use a utility knife to safely cut foam insulation board.

4 Motors 101
 Demonstrate an understanding of the basic types of motors. You can identify the basic parts of a DC motor and explain how it will operate. You will learn how to read and interpret a motor specification sheet.

5 Controlling a Motor
Demonstrate an understanding of the devices used to control the motion of a motor, including H bridge motor drivers, switches, and breadboards. You will successfully breadboard a servo motor to a switch to control the motor’s motion.

6 Final Build
You will use your knowledge of materials, building, and mechanical systems to brainstorm ideas for a prototype.

7 Invention Extension
Conceptualize a purposeful invention that uses your new minds-on and hands-on skills from the U Control unit.
KEY TERMS

Engineering (n): Using science and technology to design and improve objects and systems to solve a problem or meet a need.

Invention (n): A unique and useful device or process.

Iteration (n): A version of a design in a series of designs.

Modification (n): The act of making small or partial changes.

Patent (n): An intellectual property right issued by the U.S. Patent and Trademark Office, excluding others from making or selling the invention in the U.S. for a specified period of time in exchange for disclosing the invention.

PhD (n): A postgraduate academic degree awarded by universities.

Procedure

- Get Your JV InvenTeams Guide
- Introduction to Invention and Problem Solving
- Design a Cell Phone Stand
- Think About Your Invention
- Watch Invention Videos
- Research an Invention
- Discuss Improvements to an Invention
- Investigate Real-World Improvements
- Watch Videos about the Design Process
- Set Rules and Develop Teams
- Self-Assessment

Your Guide

1. You will use your JV InvenTeams guide as an invention guide. This guide will be a portfolio of your work and ideas.

2. The grid paper and blank paper at the end of each meeting can be used to sketch, brainstorm, and document ideas.

INTRODUCTION TO INVENTION AND PROBLEM SOLVING

1. We all run into challenges on a daily basis. You will now get a taste of what being an inventor means by coming up with ideas to address some of these problems.
2. Your educator has written down some problems on strips of paper. You will work with a team to build a solution to one of these problems using everyday materials.

3. After you receive your problem, use the recycling bin to find building materials and work with your team to devise a quick invention to meet your need.

4. When you are finished, take turns sharing your simple solutions with the full group. Some questions to ask other groups include:
 - How would you change your invention if you had more time?
 - How would you change your invention if you had a bigger budget?

5. Inventors often use inexpensive, everyday materials to create prototypes of their inventions. That’s because they don’t want to waste expensive materials in the early stages of designing. Failure and mistakes are common and part of the process.

DESIGN A CELL PHONE STAND

1. Do you ever get annoyed by your phone not being able to stand up on its own? Inventors think outside of the box and create prototypes of their ideas using everyday materials.

2. Your challenge is to invent a low-cost cell phone stand using recycled materials like cardboard. You can also use duct tape.

3. Before you start, watch Josh Ramos’ Cardboard Videos to learn some cardboard cutting tips and tricks. Josh is a PhD candidate in Mechanical Engineering from MIT.

4. If you are having difficulty coming up with your own design, check out Josh Ramos’ Cardboard Phone Stand.

Prototype (n): A model of something built to test a concept. Many iterations are created before the final design is determined.

Hands-On and Minds-On

MIT’s motto is Mens et Manus, which translates to Mind and Hand. Inventors are resourceful and use many tools. Some “tools” are based on learned knowledge stored in our minds from science and math classes. Other “tools” are practiced – hands-on skills like drawing and building things.
THINK ABOUT YOUR INVENTION

1. What do you like about the stand you made?

2. How would you change your design if you wanted to watch a video in the landscape format (sideways)?

3. Where are the speakers on your phone? How might you use the placement of the cardboard or other materials to improve the sound?

4. Share your design with another student. Write their feedback below:

5. How would you incorporate your and their comments in your next design? Describe this next design iteration in words or pictures.

During the JV InvenTeams initiative, you will learn about new tools and materials through invention activities like this one. You will think of iterations to improve your design after successfully meeting these challenges.

WATCH SOME INVENTION VIDEOS

1. Each year, teams of undergraduate and graduate students apply for the Lemelson-MIT Student Prize Competition. Check out some cool videos from previous winners and finalists:

 - **Alice Chen’s Inventions Make Our Lives Healthier** (2:27)
 - **Ben Peters’ Inventions Make Our Lives More Engaging** (1:57)
 - **Eduardo Torrealba’s Inventions Make Our Lives Easier** (first 9 min)

 - Watch [Josh Ramos’ Cardboard Videos](#) to learn how to safely bend and cut cardboard before doing the activity.
2. All good inventions, including the ones presented in these videos, stem from a real problem or need. Most inventions do not produce radical change in society, but rather build upon previous inventions to make aspects of life easier, safer, more comfortable, more engaging, and/or healthier.

INVENTION RESEARCH

1. Identify an object in the room.

2. We often take the daily products and tools in our world for granted. Each of these items has a history of evolution. Scientists, engineers, and designers made modifications over time that produced the modern object you see today.

3. You will conduct research on inventions using [Google Patent Search](https://patents.google.com). Google Patents lists U.S. patents as well as international patents. Patents are sequentially numbered; for example, search for “student desk” and look at the images for US7571959B2.

 • How can this product continue to improve?

 • What information can you gather from the technical drawings? Why are detailed images such an important part of a patent?

INVENTION PROFILE

MIT alumna Alison Wong invented Keyprop™, a simple solution to the problem of keeping your smartphone propped up. Check out a video of her invention: [Invention Profile: Keyprop](https://www.youtube.com/watch?v=dQw4w9WgXcQ).

VIDEO NOTES

Write down some thoughts you have about the videos here:

1. General thoughts:
2. How can failure turn out to be a good thing?
3. What failure have you learned the most from?
DISCUSS IMPROVEMENTS TO AN INVENTION

1. Think about a timeline of your daily routine. If you could improve one product or process during your typical day, what would it be?

2. In your group, discuss the following:
 • How might you go about making the improvement? Describe your process.
 • What might be some challenges to meeting this need?
 • Thinking further, do you notice anyone in your family or community who struggles to complete a certain task? What invention might improve this aspect of their life?

INVESTIGATE REAL-WORLD IMPROVEMENTS

• **Sesame Ring**: Several MIT undergraduate students were having difficulty locating their reusable train tickets upon entering the train station. Their solution is a wearable reader in the form of a customizable ring.

• **Tile™**: Do you ever have difficulty finding your keys or wallet in your home? The solution is a small piece of plastic with a chip that connects to an application on your smart phone.

• **uBeam**: Meredith Perry, a graduate of the University of Pennsylvania, was sick of long electrical wires for laptop computers. She started a company, uBeam, that is working on a wireless charger.

PRODUCT NOTES

What are three things that don’t work quite right in your daily life?

1. _____________________
2. _____________________
3. _____________________

How could you improve these things?

WATCH VIDEOS ABOUT THE DESIGN PROCESS

1. Watch the MIT Design Process Videos.

2. Draw a visual model or outline below that will help you remember the steps of the design process as you invent something.

SET RULES AND DEVELOP TEAMS

1. The JV InvenTeams initiative is all about hands-on fun. To make this possible, here are a few important rules to follow:

 • Safety is the number one priority! Watch tutorial videos before using new tools and materials.
 • Ask for help. Don’t guess, especially about how a tool works.
 • Consider all ideas. No idea is “dumb.” As an inventor, focus on the ideas with the most potential when developing a prototype.
 • Embrace failure. Failure is a part of the invention process!
 • Value your team. Everyone brings different skill sets and knowledge to the table.

2. Diverse teams are successful teams.

3. Play a game called “Four Corners” to help the educator create balanced teams. Instructions are on the next page.

DESIGN PROCESS NOTES

Steps of the design process are:
• identifying needs,
• brainstorming ideas,
• sketching,
• building a prototype,
• testing,
• modifying, and
• re-testing.

EXTEND THE LEARNING

You can continue exploring invention by researching well-known inventors in your community. How? Go to Free Patents Online. The login is free. Click on the SEARCH tab, then use the “Quick Search” feature to enter your location under “Inventor Fields.” You may want to search chronologically by the last 20 years.
FOUR CORNERS GAME

Teams of inventors include people with different interests and skills. In order to organize into teams, think about your own interests and skills.

Draw lines from the items on the left to the best-matching description on the right.

Types of Team Members

Tinkerer: I like to take things apart and build things.

Talker: I like to talk to people and I enjoy public speaking.

Doodler: I like to draw things and express my thoughts through drawing.

Organizer: I like to organize people and things.

Your Interests and Skills

Sounds most like me

Sounds almost like me

Sounds a little like me

Sounds least like me

The corners of your classroom will be marked with the four types of team members. Go to your “sounds most like me” description of yourself. Your educator will make balanced teams using this information.

Name: ___________________________

Alison Wong, Illustrator
INTRODUCTION TO SHOp SAFETY

1. Shop safety is of the utmost importance so that nobody gets hurt. You will be using hand tools such as utility knives and screwdrivers and perhaps a basic power tool such as a drill. Tools should always be used in the way they were designed to be used. Watch a video: General Shop Safety.
2. Review the general shop safety rules:
 • Wear safety glasses.
 • If you are in doubt about how to use a tool, ask!
 • Have a plan for what you are going to do with the tool.
 • Be mindful of others who might enter into your workspace accidentally.
 • Secure the workpiece.
 • Have a balanced stance while using a tool.
 • Remove all jewelry, watches, and loose clothing before working with machinery.
 • Pin up long hair and wear closed-toe footwear.
 • Never work when you are tired or not focused.
 • Leave the workspace cleaner than you found it.

INTRODUCTION TO MACHINES

1. Gather in your teams from the first meeting.

2. You are going to design a mechanical door that will open with a switch. Consider:
 • What do you think it takes to make a door opener?
 • What parts will the opener need?
 • How might learning about control arms and motors help you build a door opener?

3. Read independently the following information about machines and how they work.

4. Review the definitions for **machine**, **work**, and **mechanical advantage** after reading.

 Everywhere around you are machines that help make your life easier. Inventors and engineers are always at work thinking about how to integrate machines into new inventions or use them in new ways.

 A **machine** is any device that helps you do work. **Work** is defined in mechanics as the amount of energy involved in applying a force over a distance. It is calculated as:

 Work = Force x Distance

 Think of a hammer. A hammer helps you do work by making your arm longer. The force you exert on the nail when using the hammer

 Hammers help you do work by making your swing longer and amplifying force.

 Credit: Malene Thyssen, Wikimedia Commons

 Mechanical advantage (n):
 The amount by which a machine can multiply a force.

 Mechanical system (n): A system that accomplishes work by using forces and movement.

 Output effort (n): The effort or force produced by an object.

 Pulley (n): A wheel with a groove in it that allows for a rope, a chain or another device to move over it.

 Screw (n): A simple machine used to translate rotation into linear motion.

 System (n): Something that is made up of a lot of parts to do a job.

 Torque (n): A measure of the tendency of a force to rotate an object about an axis, fulcrum, or pivot point.

 Wedge (n): A triangular-shaped inclined plane used to separate two objects, hold them in place, or lift them.

 Wheel and axle (n): A wheel is locked to an axle, which moves the wheel.

 Work (n): The amount of energy involved in applying force over a distance.
is multiplied by the increase in distance from your arm to the nail. The amount of work by which a machine can multiply a force is called the machine’s **mechanical advantage**. All machines use mechanical advantage to multiply force.

A machine may multiply the force exerted on an object, but ultimately the amount of force going into the machine (**input effort**) and the amount of force produced by the machine (**output effort**) always balance out. All of the amplified force, or output effort, produced by the machine comes at a price: To get more force or output effort, you have to sacrifice some distance. Think of a seesaw: If two objects of unequal weight are placed at either end, the lighter object will have to move farther away from middle of the seesaw to balance the weight of heavier object. The force exerted by the lighter object (output effort) increases as the distance increases. You have to decide whether you want to save force and apply a smaller force over a longer distance, or to save distance and apply a larger force over a smaller distance.

WATCH A VIDEO ABOUT SIMPLE MACHINES

1. Read the following introduction to simple machines:

 There are six simple machines that create a mechanical advantage allowing humans to do more work. They are the **lever**, the **wheel and axle**, the **pulley**, the **inclined plane**, the **wedge**, and the **screw**. These can be thought of as the “building blocks” from which all machines are composed. Your mechanical door opener will use a few of these simple machines to do the work of opening a door.

2. Watch the **Simple Machines video**, in which the six simple machines are shown and discussed.

3. Share with a partner what you’ve learned from the video, using the discussion questions below as a guide:
 - How does a lever make life easier?
 - How are levers used to open doors?
 - Do you think a doorknob is a simple machine? Discuss why or why not.

SIX SIMPLE MACHINES

1. Read the following information on simple machines. You will learn how engineers combine simple machines into systems that work
together to meet a specific need. The mechanical door openers you will build involve both mechanical and electrical systems.

Lever: Many tools used for moving things are levers that provide the user with a mechanical advantage – they can make work easier. There are three classes of levers based on how the rigid tool moves a load around a pivot point, called a fulcrum, while exerting force. Examples: crowbar and scissors (Class 1), nutcracker (Class 2), and tongs and tweezers (Class 3). The arms on your mechanical door opener will be levers.

Pulley: A wheel with a groove in it that allows a rope or a chain to slide over it; the wheel helps create a mechanical advantage to lift the weight more easily. Examples: flagpole, construction cranes.

Pulleys used to lift loads on a ship
Credit: Wikimedia Commons

Construction cranes use pulleys to lift heavy loads.
Credit: Leigh Estabrooks
Wheel and axle: A wheel is locked to an axle so they both move together as an assembly. Examples: steering wheel, wheel of a bicycle and the rear-wheel sprocket.

![A car steering wheel is an example of a wheel locked to an axle.](image)

Credit: Wikimedia Commons

![A wheel of a bicycle and the rear-wheel sprocket is another example of a wheel locked to an axle.](image)

Credit: Leigh Estabrooks

Inclined plane: A flat plane lengthens the distance you lift or move something, which increases mechanical advantage and lessens effort. Examples: wheelchair or access ramps, moving truck ramps, skateboard park ramps.

![Skateboard park ramps are examples of inclined planes.](image)

Credit: Leigh Estabrooks

![Moving truck ramp with an access ramp are both examples of inclined planes.](image)

Credit: Leigh Estabrooks

![Wheelchair or access ramps are examples of inclined planes.](image)

Credit: Leigh Estabrooks
Wedge: A triangular-shaped inclined plane used to separate objects, hold them in place, or lift them. Examples: wedge used to split wood, door stop.

![A wedge is used to help split logs.](image1)

Credit: Benjamin Estabrooks

Screw: Screws are used to convert one type of motion into another. They convert rotational or turning motion into linear motion. There are screw mechanisms and objects that are commonly called “screws.” A famous screw mechanism was invented by Archimedes in the 3rd century BC. Called a water screw, it has been used to move water for irrigation or drainage and many types are still used today. Screws made of threads on shafts are used for fastening parts together. Screws use their mechanical advantage to press two or more pieces of material together like the screws that attach hinges and brackets to your door.

![A modern Archimedes screw at a pumping station in the Netherlands](image2)

Credit: M.A. Wijngaarden via Wikimedia Commons

Screws are fasteners. They have heads with eternal, ridged threads on shafts. They are used to hold things like wood and metal objects together. Screw heads are shaped to be used with specific types of screwdrivers like Philips head and flat drivers. Most screws are tightened with a driver when turned to the right.

Screws have characteristics that include length, diameter, and pitch – the distance between threads – that determine how they are labeled and used. For example, a screw labeled “20 tpi x \(\frac{1}{4} \) inch x 1 inch” means the screw has a 20 threads per inch (tpi), a \(\frac{1}{4} \)-inch diameter shaft, and a 1-inch length. Learn all about fasteners from [this poster](https://example.com/poster) developed by MIT’s D-Lab.
Gears: Sometimes gears are used with simple machines. Gears are used to magnify or reduce force, change the direction of the axis of rotation, or increase or decrease speed.

Engineers use their knowledge of the six simple machines when they conceptualize, design, and build mechanical systems such as the mechanical door opener you will make. You can use your knowledge of how the machines work to anticipate and troubleshoot the problems that come up when you build your mechanical system. You can even use your knowledge to be creative and exchange one machine for another!

2. Look at the chart below. Fill in the columns with examples of simple machines you have seen in your everyday life.

<table>
<thead>
<tr>
<th>6 SIMPLE MACHINES</th>
<th>What is it?</th>
<th>Where is it?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lever</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheel and axle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulley</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclined plane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wedge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screw</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SYSTEMS IN ENGINEERING

3. Read independently the following background on engineering systems, then underline the important parts in your guide.
A system is made up of lots of parts that are put together to do work. Inventors often create a mechanical system when they put together several simple machines. A mechanical system accomplishes work by using forces and movement. You will be constructing a mechanical and electronic system in this unit: a mechanical door opener that operates using a switch. Let’s break that down.

Mechanical systems are complex assemblies of machines that help complete a task. You will be putting together several simple machines in your door opener, to create the structure of the door and the basic parts to make it move.

You’ll also be creating an electronic system. There are three main parts in an electronic system: the input, the process, and the output. You’ll be learning more about these parts in Meetings 4 and 5. Your electronic system will be controlled by a switch and powered by a motor.

4. Discuss the question below with your team. Some examples of mechanical/electrical systems are motor vehicles, electric bicycles, and air conditioners. Try to explain what makes these systems mechanical and electrical systems.

 • What are some other examples of mechanical/electrical systems that you have encountered in your daily life?

INVESTIGATE MECHANICAL DOOR OPENERS

1. Read independently the following information on different types of mechanical door openers.

You’ve probably walked through an automatic door if you’ve stepped foot inside a commercial or public building. An automatic door is a mechanical door-opening system designed to allow users to pass through with little or no effort. There are many different types of automatically opening doors, and there are several methods to activate them. Some factors engineers consider when designing automatic door styles—and builders use when choosing one—are space, energy efficiency, and the nature of the pedestrian traffic that will be coming through the doors.

INVENTION SPOTLIGHT

Amos Winter (PhD, MIT, 2010), now an assistant professor of mechanical engineering at MIT, and Tish Scolnik (BS, MIT, 2010) developed the Leveraged Freedom Chair, a wheelchair that uses a lever to push, making it easier for riders to travel over rough terrain. Riders, depending on where they grab the lever, can gain more speed and torque than a regular wheelchair on a flat surface. Read more about how Winter and Scolnik’s innovative integration of the lever into an existing mechanical system has helped people gain more mobility in developing countries: Leveraged Freedom Chair.

Credit: Prof. Amos Winter
Sensor-Operated Doors (a.k.a. “Automatic Doors”)

• **How they work:** The doors operate by detecting movement via a sensor and then opening automatically. Sensor-operated doors usually have both *activation sensors* that detect approaching pedestrians, and *safety sensors* that detect departing pedestrians so that the moving door does not collide with them.

• **How they are powered:** Electricity (motors).

• **Where they are found:** Grocery stores and other commercial buildings.

• **Useful for:** High-volume traffic (energy saving), people with disabilities.

Automatic sliding doors at a store.
Credit: Wikimedia Commons

PATENT PROFILE

Automatically opening doors were the invention *(U.S. Patent # 1978093)* of Horace H. Raymond and Sheldon S. Roby, engineers at Stanley Works. Raymond developed a pneumatic (air pressure) operator for his kitchen cabinet doors and showed it to his coworkers, who realized the value of his invention. His patent combines a pneumatic operator with photoelectric, or light beam, control to open the door. MIT was one of the first institutions to install Raymond’s doors, which became known as “Magic Eye” doors because of the eye-shaped light sensors posted in front of the doors.

The “Magic Eye” doors of MIT’s Building 7.
Credit: Eurah Ko

The patent was titled “Apparatus for Operating Doors.”
Switch-Operated Doors

- **How they work:** The switch to open the door is operated manually, via a push button or a swipe card.
- **How they are powered:** Electricity (motors).
- **Where they are found:** Airports, train stations, commercial buildings.
- **Useful for:** Security checkpoints and access doors that require more control over the open/close cycle.

![A swipe card triggers a switch to rotate these train station turnstiles and lock them after one turn.](Credit: Wikimedia Commons)

Low-Energy Power Assist Doors

- **How they work:** Operated by a switch and a door closer. Low-energy power assist doors reduce the force or effort it takes to open a door while you push or pull on it.
- **How they are powered:** Electricity (motors), hydraulics, springs.
- **Where they are found:** Libraries, schools, health care facilities.
- **Useful for:** Ease of opening, avoiding “slamming.”

![This low-energy power assist door is operated by a switch. It has a motorized door closer (the metal box at the top) that opens and closes the door.](Credit: Wikimedia Commons)
2. Discuss the following prompts with your team:
 • Who are the possible users for each door design?
 • How is each design adapted to users’ needs?
 • What are likely drawbacks or problems with each door design? How could the designs be improved?

IDENTIFY USERS AND THEIR NEEDS

1. Read the information below about door users and their needs. Work with your team to complete the problem/solution chart.

2. You have completed the first few steps of the design process, a process that inventors follow in pursuit of new products. This process starts with identifying a problem or need, researching, brainstorming, and formulating ideas. The problem here is that a person in a wheelchair can’t push open a door. Solution ideas include an automatic door opener.

Inventors first identify a need or problem they would like to solve before they begin their designs. Inventors and designers often examine products already on the market before creating a new product.

PATENT PROFILE

Inventor James M. Helms was issued a patent in 2012 for creating a motorized door opener to open and close the heavy armored doors on military and security vehicles. The great weight of the doors often becomes a problem when vehicles are on sloped and other non-horizontal surfaces. The motorized opener gives a mechanical advantage and increases leverage, through a combination of sensors, gears, and lengthened lever arms, so users can more easily open and close the doors. Read more about the invention here: U.S. Patent # 8171673.

INVENTOR SPOTLIGHT

Klemens Torggler, a kinetic artist, creates mechanical art using large rotating squares. He invented a flip-panel door made of two large squares that opens and closes at the touch of a finger. Find out more about Torggler and his invention here: Torggler’s doors.

Example of Torggler’s art.

Credit: Klemens Torggler, Wikimedia Commons
Think about manually opening a door. It seems like a simple task, but there are many circumstances in which it’s difficult or impossible. Brainstorm users, situations, and locations in which an automatic door would be useful or even vital. Some ideas include:

- People with disabilities
- Indoor/outdoor pets
- Farm animals that need to be “cooped”
- Sanitary reasons (e.g., the doors on public bathroom stalls)
- “Hands full” situations (carrying objects or loading)
- Assisted living residences

Narrow the focus by briefly discussing and researching the various needs of your audience. For example, what disabilities and conditions might affect a person’s ability to open and close a standard door? How might a door system designed for a blind person be different from one for someone with advanced arthritis?

Use the problem/solution graphic organizer here to organize your brainstorm. List the problems and needs of the various users you’ve identified and potential door design solutions. Think of the automatic door designs you’ve observed and their features.

<table>
<thead>
<tr>
<th>User</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Now you will move from thinking about the problem to doing something that solves the problem. You will learn more about how automatic doors operate (swing arms and motors) as you work with a small team to design and build a prototype of a mechanical door opener system in this unit.

TAKING A CLOSER LOOK:

CAD DRAWINGS (OPTIONAL)

1. Inventors and engineers often use CAD (computer-aided design) to make detailed precision technical drawings of their designs. CAD software allows engineers to “speak” to each other using these technical drawings as a common technical language. These drawings are often used to analyze designs and look for improvements and modifications to make. Read the following material:

 Let’s take a closer look at automatic door construction. The CAD (computer-aided drafting) computer program is used for making detailed precision drawings of the components or elements in a 2-D or 3-D model. There is a CAD drawing in your guide and a photo of something called a door closer, which is a mechanical device used to control the rate at which a door opens and closes so that it does not slam. Sometimes door closers are motorized by connecting them to electric motors, either inside or outside the box. You will be using a similar construction for your mechanical door-opening system.

2. Look at the photo and the CAD drawing below and work with your team to answer the prompts that accompany each one.

 ![CAD drawing of a door closer](image-url)
• Label the parts of the door closer on both the CAD drawing and the photo: control box, control arms, fasteners.
• What simple machines do you notice in the construction of the door closer?
• How are the parts of the closer fastened together?
• How are the control arms attached to the door?
• How are the control arms constructed? What materials are they made of?
• Where should the motor be attached, if it had one—on the door or the wall?
• Why do you think the engineer chose this design? What problem is the door opener or closer solving?

SUSTAINABLE SOLUTIONS

A team of graduate students at MIT analyzed door use in a building on campus that was equipped with both revolving and swinging doors. They found that the swinging door allowed as much as eight times more air to pass through the building than the revolving door, causing a significant loss of energy in heating and cooling the building. They found that just 23 percent of visitors used revolving doors, although they are more energy-efficient. Read more about the study here: [Revolving Doors](#).
MY THOUGHTS

Student Name

Date
U CONTROL
MEETING 3: BUILD A DOOR

KEY TERMS

Foam insulation board (n): A stiff, lightweight material that can be easily cut.

Nut (n): A type of hardware, usually made of metal, used to hold together objects that have been connected by a screw.

Pilot hole (n): A small hole drilled or tapped into material before a screw is installed that creates an easy path for the screw to follow and prevents it from splitting the material.

Screw (n): A cylindrical pin or rod with a head on one end, used as a fastener.

Washer (n): A flat ring used with a screw to tighten a joint and redistribute the pressure.

Procedure
- Construct a Door (may be divided into two meetings)
- Review the Process
- Self-Assessment

CONSTRUCT A DOOR

1. You will be using the steps in your guides to build a door for your mechanical door opener. Inventors create a prototype as the early version of a product idea. The prototype is created with rough, inexpensive or improvised materials to make sure an invention will function as planned. It can also be larger or smaller in scale than the finished product. Discuss as a class:
 - What is a prototype in your own words?
 - Have you ever built one?

2. Gather with your team. You will be measuring and cutting foam insulation, screwing in nuts and bolts, and completing other tasks to build the door.
3. Each person should have specific roles in the building process. Think about your team members’ strengths to determine which group members should be in charge of each step. Consider having one person read the directions while others work, and switch roles halfway through.

4. Carefully review the instructions for each step as a team before you start, then begin the activity. Your instructor can help you with troubleshooting tips if you have any problems.

5. Your instructor will collect and store the leftover foam insulation. It will be used later to make mounts for the doors in Meeting 6.

Build a Door

STEP ONE: Measure and mark the foam insulation.

- Place the foam insulation on a table with cardboard under it. Use a yardstick to measure 6 inches in from all four sides and mark with tick marks at 1-inch intervals. Draw lines with a marker to connect the tick marks.
- Turn the foam insulation over and repeat the process, making sure your measurements are accurate so they align with the other side.
STEP TWO: Make cuts using a utility knife.

- Now you’re ready to make cuts in the foam insulation. Foam insulation is a stiff yet very workable material that is ideal for prototyping. Watch this video from MIT’s Design Online about cutting foam core safely, then read the safety tips below.

- Your door will be made from a type of foam insulation, so it’s thicker than the foam core board you’ll see in the video. The same cutting and safety tips apply.

Safety Tips

- Wear safety glasses.
- Wear dust masks.
- Utility knives have really sharp blades! Be very careful.
- Always keep the utility knife retracted when not in use.
- Make sure your fingers or other body parts are NEVER in the cutting path.
- Angle the blade straight down, with a low cutting angle.
- Use multiple passes and light strokes.
- Open a utility knife and cut along the bottom line. Use steady strokes and multiple passes. **Remember to angle the blade**

INVENTING GREEN

Eben Bayer and Gavin McIntyre created an environmentally friendly insulation called Greensulate™ made primarily of mushrooms, water, and agricultural waste. Bayer says his flash of inspiration came when he realized that you could take a living organism, like fungi (mushrooms), and use its explosive and explorative growth (mycelium) to hold insulating particles together. This thought was inspired by seeing logs, leaves, and other brush being held together in the woods by living networks of fungi mycelium. Bayer was awarded the Lemelson-Rensselaer Student Prize in 2007 for his work. Read more about Bayer and McIntyre’s work: Greensulate.

Myco Board produced from mycelium, the vegetative growth stage of fungi.

Credit: Ecovative
straight down or perpendicular to the foam insulation to get the best cut. Use the rigid measuring stick as a guide to keep your fingers out of the way of the blade and to make straight cuts.

- Your goal is to cut as deeply as you can. If the pieces do not separate, make deeper cuts. You can also gently snap the two pieces apart. Be careful not to force the pieces apart; it may create very uneven edges.
- Turn the foam insulation over and repeat on the other side to make sure you cut completely through the foam insulation.

Credit: WGBH

Foam core is a light, sturdy material that is stiff and easy to use. The company, Monsanto, invented foam insulation in 1957 in 1/8-inch and 3/16-inch sizes for the graphic design industry. It has now become popular in architecture, where it is often used for prototyping small objects, and in the framing industry, for backing paintings. Students often use foam core to mount science fair projects.
• Cut the middle square. This will be your “door.” You will now have three shapes: an upside down U-shape which will be the door frame, a smaller square shape which will be the door, and a rectangular shape which will be the base. The door frame and base are shown below.

EDUCATOR AND STUDENT NOTE

Troubleshooting Tips:
The door does not open smoothly and catches against the frame.
The door may not open smoothly if the foam insulation edges are ragged. Test to make sure the door will open. Use the utility knife to shave away the excess to make a smooth edge if it does not open well. Make sure to cut slowly to avoid the knife slipping and to avoid tearing the foam insulation. Always cut away from yourself and make sure no one is within an arm’s length of the person who is cutting.

• Take the extra piece of foam insulation and measure and cut a 6-inch piece across the bottom only, using the same process as above. This will be a second “base” (rectangular piece).

• Measure and mark a line ½ inch up from the bottom and another line ¼ inch from the right side of the door. This will ensure that the door doesn’t get stuck in the frame. Cut along these lines.
STEP THREE: Attach the door hinges.

- Remove the hinges from the packaging and set aside any screws. You will be using larger screws to attach the hinges to the door.
- Place the door and the frame face up on a flat surface.
- Place a hinge 1½ inches below the top left edge of the door and the inner left corner of the frame. Make sure the raised centers of the hinges are facing up. The hinge should straddle the door and frame.
- Mark inside the top and bottom holes of the hinge with a pencil.
- Place the other hinge 1½ inches from the bottom left edge of the door. Remember to make sure the raised center of the hinge is facing up. Mark inside the top and bottom holes of the hinge with a pencil.
- Remove the hinges. Press a screw into all marked areas, making slight indentations in the foam insulation.

Demonstrate where to place the hinges, the first 1½ inches from the top left edge of the door and the inner left corner of the frame, and the second 1½ inches from the bottom left edge of the door. Make sure the students place the raised center of the hinge facing up. The hinges should straddle the door and frame.

Show students how to mark the top and bottom holes of each hinge with a pencil, then use a screw tip to make an indentation on the marks.

- Mark the top and bottom holes on either side of each hinge with a pencil. Remember to make sure the raised center of the hinge is facing up.
- Remove the hinges. Press a screw into all the marked areas, making a slight indentation in the foam insulation.

Engineers are always thinking of ways to build lighter, stronger materials. Often, the tradeoff in creating stiff materials is that they are dense and heavy. Engineers at MIT and Lawrence Livermore National Laboratory recently developed an ultrastiff, ultralight, nanostructured material that is based on repeating patterns, the same principle that makes the Eiffel Tower so strong, yet so airy. Read more here: [New Material](#).
Pilot Holes

The process of pressing a screw into foam insulation is similar to drilling “pilot holes” in wood construction. Builders drill a small hole into a piece of wood before installing a screw. The pilot hole creates a path for the screw, to help ensure it goes in straight and doesn’t split the material.

- Use a Phillips head screwdriver to screw in the screws, pushing them slightly as you go. Foam insulation is sturdy but is still easy to split.
- You can help to avoid splitting by having one team member hold the foam insulation in place while another drives in the screws. Do not screw hardware too tightly or too forcefully.

Phillips Head and Flat Head

You may have heard the terms “Phillips head” and “flat head” to describe screws and screwdrivers. The term “Phillips head” refers to a type of beveled screw head invented by a man named Henry F. Phillips. One must use a Phillips head screwdriver to drive this type of screw. A flat head screwdriver is a screwdriver with a flat blade. It’s used to drive slot head screws and other screws without a beveled screw head.

- Place a washer over the exit end of each screw and twist a nut over the washer until secure.
- Test to make sure your door opens and closes easily. Smooth the rough edges with the utility knife if it does not.
Troubleshooting Tips:

A screw split the foam insulation near the edge: Try to screw straight down and not at an angle. Reinsert the screw at an angle if the screw is too close to the edge of the foam insulation.

A screw creates a hole in the foam insulation that’s too big: Remember to be gentle when screwing the hardware in place—foam can “tear” easily. Do not push too hard. Use a washer to stabilize the area if you make too big a hole where the screw exits. Make sure you don’t tighten the nuts so much that they dig into the foam insulation.

The foam insulation may split or develop holes that are too large if you screw in the hardware too forcefully or too close to the edge.

Credit: WGBH

STEP FOUR: Attach L-brackets to the frame.

NOTE: Throughout these steps, handle the materials gently to make sure they aren’t damaged.

- Position the frame with its attached door vertically on top of the base. Make sure that the frame is centered and its edges match the short edges of the base.
- Have a team member hold the frame in place while another positions one L-bracket on either side of the frame, about 1½ inches from the edge of the base. Make sure the brackets do not hang over the edge of the base. Do not attach them yet.
- Position the other two brackets 1½ inches from the bottom inner edge of the frame. The structure will not

Credit: Eurah Ko
be as stable if you don’t place them appropriately.

- Have a team member mark the holes in the L-brackets with a pencil to show where the screws will go. Remove the door frame, keeping the brackets in place.
- Press a screw into all marked areas, making a slight indentation.
- Place the frame back onto the base and begin to screw the L-brackets into the base and the frame. Do one side at a time.
- Use a screwdriver to screw the machine screws through the foam insulation, pushing gently as you go. Place a washer over the screw and twist a nut over the washer until secure.
- Periodically check to make sure the L-brackets are tight enough against the frame to hold it stable.

STEP FIVE: Attach the extra base.

Attach the extra base (sub-base) beneath the base of the assembled door. This will help prevent the screws at the bottom from catching and scratching surfaces.

- Place the sub-base under the base, matching the edges. Gently push down on each side of the base to press the ends of the screws into the top of the sub-base.
- Tape the sub-base to the base.
A fully assembled door.

Credit: Eurah Ko
REVIEW THE PROCESS

You have just built the base, or skeleton, of your mechanical system! Most mechanical systems have a central structure to which other parts are added. You'll be attaching and constructing the other parts (the control arms and the motor) of your mechanical door-opening system in Meeting 6. Discuss the following prompts with your team, and then have them share your thoughts with the whole group:

• Think about any problems you had putting together the door. What do you think caused the problems? What would you do differently next time to avoid the problems?
• Think about the materials used—what are the pros and cons of each material? Can you imagine different and/or better materials to use for prototyping? What are the pros and cons of these materials?
• What improvements would your team make to the design of the door? What would you do differently?
MIT’s D-Lab publishes self-help guides on mechanical design elements such as fasteners and choosing materials for projects. The guide to fasteners has helpful information on the differences between screws and bolts, and how washers work: Fasteners.

Educators may consider printing and posting the fastener sheet in the work room.

Credit: MIT D-Lab
MY THOUGHTS

Student Name

Date
Procedure

- The Science of Motors
- Watch a Video: Electrons in Motion
- Investigate Motors
- Reading Motor Spec Sheets (optional)
- Self-Assessment

THE SCIENCE OF MOTORS

1. You have investigated door openers and users’ needs, learned how simple machines operate, and built your door and door frame. You will now explore motors—the type of device that will make your door open and close. You’ll read some information about motor science, watch a video—Electrons in Motion—about how motors work. Think about the following:
 - What everyday devices are you familiar with that operate using motors?
 - How does the motor make the device work?
 - How do you think a motor will make your door opener work?
2. Read the following information on how motors work:

You have just completed several steps in the design process. You have investigated door openers and users’ needs, learned about how simple machines operate, and built the base of your door.

But, how are you going to make your mechanical door opener . . . open? The **actuator** is the most important component in any mechanical system. The actuator is the thing causing the movement. A **motor** will be the actuator in your door opener, causing the control arms and the door to move. It’s helpful to know how a motor works so you know how it will open and close your door and how to attach it to the door.

The typical motor used today has two basic parts: a stator and a rotor. The **stator** is a stationary magnet inside the motor. There is a coil of wire inside the stator mounted on an axle that spins. This is the **rotor**. When electricity flows through wires, it creates a **magnetic field**, which will either repel or attract a magnet. Devices called brushes carry the current to a commutator, which reverses the electric current so that the magnet is constantly repelled, attracted, repelled, attracted, and so on. This constant repelling and attracting serves to keep the motor’s shaft spinning. The shaft is a metal piece attached to the end of an axle. It is the part of the motor to which a load or gears are attached.

DC motor.
Credit: Wikimedia Commons

Nominal voltage (n): The voltage at which a device operates best.

Ohm’s law (n): A law that states that voltage is equal to current times resistance.

Resistance (n): A material’s tendency to resist the flow of charge (current).

Revolutions per minute (rpm): The measure of the frequency of rotation.

Rotor (n): The part of a motor that turns; the shaft is attached to it.

Stator (n): The stationary part within which a rotor turns.

Torque (n): A measure of the tendency of a force to rotate an object about a fixed point.

Voltage (n): The relative difference between any high-energy and low-energy point; it is measured in volts (V).

Velocity (n): The speed of something in a given direction.
3. Use the motor diagrams on the previous page to answer the prompts below. Share what you’ve learned with a partner.
 • What causes a motor’s shaft to spin?
 • How would you attach the control arms to the motor based on the door opener pictures you viewed in the last meeting? Circle the location of the motor in the first picture.
 • The second picture shows the inside parts of a motor. Can you still identify where you would attach the control arms on the motor? Circle the location on the motor diagram (picture 2).

HISTORY

The first rotating device driven by electromagnetism was built by Peter Barlow in England in 1822. Moritz von Jacobi created the first rotating electric motor in 1834. Two Dutchmen, Sibrandus Stratingh and Christopher Becker, took the electric motor a step further by using it to power a small model car in 1835, which became the first known practical application of an electric motor.

INVENTOR SPOTLIGHT

Michael Faraday is one of the most important inventors in history. He was one of the first to understand that an electric current flowing through a wire produces a magnetic field around that wire. He invented many rotating devices based on this principle, including the Faraday rotator and the Faraday wheel.
WATCH A VIDEO: ELECTRONS IN MOTION

1. Watch the video about how motors work, Electrons in Motion, which gives an overview of the basic principles behind motor science.

2. Respond to these questions in your guide:
 • What did you learn from the video about the science behind how motors work? Describe in your own words how the rotor, stator, and shaft work together to make a motor work.
 • What motion does the motor generate to do work? How is this motion useful in opening a door?

3. Discuss your answers with the whole group.

INVENTION SPOTLIGHT

Inventions that revolutionize fields—like the integrated circuit—are called macro inventions. Macro inventions change the way we live and do business. The light bulb and the steam engine are examples of macro inventions. Micro inventions demonstrate improvements and advancements in current inventions. The separator condenser for the steam engine is an example of a micro invention. It improved upon the steam engine’s design. Such inventions are very important but do not have the same scale or breadth of impact on our lives as macro inventions. Often, macro inventions precede micro inventions. Micro inventions are evidence that one can always invent improvements!

EXTEND THE LEARNING

The force behind the movement of the wire in an electric motor is referred to as the Lorentz force. When an electric charge moves through an electric field, the force moves in the same direction as the electric field. When an electric charge moves through a magnetic field, the force moves in a direction perpendicular to the magnetic field and the direction the charge moves in. This is what makes the wire in an electric motor rotate over the magnet. Consider the direction of the electric current, where the magnetic field might be, and the direction of the motion of the wire.
INVESTIGATE MOTORS

1. Read the following information about the two main categories of computers and the three types of DC motors. Underline the important parts as you read.

Motors generally fall into two main categories: DC and AC. DC motors use the constant flow of electricity from batteries. AC motors use the AC current from a typical wall socket to drive them.

There are three main types of motors within the DC motor family: standard brushed DC motors, gearhead motors, and servo motors. The standard brushed DC motors are the simplest and have coils of wire, shafts, magnets, commutators, and brushes enclosed in a case. The gearhead motors and servo motors are more complex. Gearhead motors have gears attached to the shaft, and servo motors contain control systems along with gears to allow for precise position control.

Standard brushed DC motor: This is one of the main types of motors. It has four main components—coils of wire, shaft, magnet, commutator, and brushes—enclosed in a case.

- **Uses:** Toys, simple tools, appliances
- **Pros:** Inexpensive, lightweight
- **Cons:** Can be noisy, less control over speed and motion

Gearhead motor: A motor with a gearhead on it. A gearhead is a box of gears that attaches to the shaft of a motor. Adding a gearhead to any motor will reduce the speed while simultaneously increasing the torque. **Torque** is the measure of the tendency of a force to rotate an object about a fulcrum, or pivot point. More torque means more power to make something rotate. Gearing can be added to any type of motor, not just DC motors.

- **Uses:** Robotics, radio-controlled cars
- **Pros:** Speed reduction, increased torque

EXTEND THE LEARNING

At the root of motor science is Ohm’s law, which states that voltage is equal to current times resistance. Learn more about Ohm’s law here: Voltage, Current, Resistance, and Ohm’s Law.
• **Cons:** Less precise motion control, friction causes balky movement

Servo motor: A motor that has a control system inside that allows for precise speed and/or positioning.

• **Uses:** Robotics, radio-controlled cars

• **Pros:** Low cost, precise motion control

• **Cons:** Limited range of motion

2. Your instructor will give your team the motor you’ll be using for your mechanical door opener. Examine the motor, then write your answers to the questions below:

• Which motor, of the three motors described above, do you think is the one you will be using on your door opener?

• Identify the parts of the motor and their functions.

• How do you think the parts work together?

EXTEND THE LEARNING

It can be harder to pedal, but you go farther with each pedal, when you ride a bike with gears and shift to a lower gear. It is easier to pedal, but you do not travel as far with each pedal, when you shift to a higher gear. This is **torque** at work. Torque is the measure of the tendency, or ability, of a force to rotate around a fulcrum, or pivot point; **velocity** is the speed of something in a given direction. You reduce the speed of the shaft, but gain torque, when you add gears to a motor. In other words, the motor goes slower, but is stronger and has more ability to move a load about its shaft. If you want to open a full-size door, you would want a powerful motor that comes with gears or to which you can add gears. For more information, visit: Drives and Gears.
READING MOTOR SPEC SHEETS (OPTIONAL)

1. If your instructor decides that time permits, read the following information and then discuss it with your team. This information will help you choose a motor for other projects that may involve motors.

You’ll make a prototype of a door opener using foam insulation board and simple hardware in this U Control unit, but what if you wanted to make a full-sized door opener? How would you determine which motor to use?

One of the first questions you will want to answer when choosing a motor for a project is: How powerful does the motor need to be? Motors usually have specification or “spec” sheets that give the specifications for a particular motor. These spec sheets usually tell you how much voltage, or power, the motor needs to operate, how fast the motor spins, and how much weight or pressure it can handle before it stops spinning. Let’s explore a typical spec sheet for a DC motor:

<table>
<thead>
<tr>
<th>MODEL</th>
<th>VOLTAGE(V)</th>
<th>NO LOAD</th>
<th>AT MAXIMUM EFFICIENCY</th>
<th>STALL TORQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPERATING</td>
<td>SPEED</td>
<td>CURRENT</td>
<td>CURRENT</td>
</tr>
<tr>
<td></td>
<td>RANGE</td>
<td>RPM</td>
<td>AMP</td>
<td>RPM</td>
</tr>
<tr>
<td>COMP-1222</td>
<td>1.5-5.5</td>
<td>45</td>
<td>0.07</td>
<td>16,500</td>
</tr>
<tr>
<td>COMP-1212</td>
<td>1.3-4.5</td>
<td>2.4</td>
<td>0.10</td>
<td>18,340</td>
</tr>
<tr>
<td>COMP-1210</td>
<td>1.3-4.5</td>
<td>3.0</td>
<td>0.05</td>
<td>14,800</td>
</tr>
</tbody>
</table>

Credit: SparkFun
Inventions for hair dryers go back to the 19th century, but it wasn’t until the mid-20th-century that the first hand-held blow dryer was invented. The patent for the first hand-held hair dryer was held by an Armenian-American named Gabriel Kazanjian in 1911. His hair dryer boasted a compact design that made it portable and easier to use than larger versions. The hair dryer was operated by a crank that would turn a system of gears inside the device. A heater inside heated air as it passed through and out the barrel. See Kazanjian’s patent here: [Hair Dryer].

Look at the headings: Voltage, No Load, At Maximum Efficiency, and Stall Torque. These are typical pieces of information you will find on a motor spec sheet. But what do they mean? Here’s a short guide to decoding each piece of information:

Voltage: This tells you how much voltage the motor will need to spin. Voltage is the relative difference between any high-energy and low-energy point; it is measured in volts (V). The motor will operate when you give it between 1.5V–4.5V in this case. However, the motor will work best when given the voltage at the top end of the range, the value under the “Nominal” heading.

No Load: Load refers to the object or weight that will be applied to the motor’s shaft. “No Load” tells you how many revolutions per minute (rpm) the motor will spin without a load attached to it (“Speed” is how fast, and “Current” is at what amperage).

At Maximum Efficiency: These values tell you how fast the motor will spin with the load attached. They tell how the motor performs at “maximum efficiency,” in other words, with the least amount of input power being wasted.

Stall Torque: This tells you when the motor has reached its limit of resistance and will stop spinning. In other words, it’s the maximum strength of the motor. It is usually measured in millinewton meters (mN*m), which is force times distance. Check the online source www.onlineconversion.com/torque to change mN*m into U.S. standard units (e.g., oz-in.) to get a clearer sense of how much force, or weight per unit of distance, your motor can handle.
For more information about selecting the right motor, check out: **Motor Selection**.

Calculate

You may want to find out how fast a motor will spin when you add a load to it before choosing a motor. You first need to multiply the torque load (the load you are putting on the motor) by the quotient of the speed at which the motor runs without a load, and the motor’s stall torque load. Then you subtract the result from the motor’s no-load speed:

Step 1: Torque load x (No-load speed/Stall torque) = Speed Loss with load

Step 2: Motor no-load speed – Speed Loss with load = Motor speed with the load

Here is an example of the calculation:

The motor’s no-load speed is 23,000 revolutions per minute (rpm) and the stall torque is 0.34 millinewton meters (mN*m). Suppose you placed a torque load of 0.2 oz-in. onto the motor’s shaft. How fast would the motor spin?

INVENTION SPOTLIGHT

The Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida is home to the production of giant rockets and space shuttles and has the world’s tallest doors. Four doors rise 456 feet high and weigh 888 tons. How do you power open the world’s largest, heaviest doors? The answer is via **hydraulics**. Hydraulics use pressurized liquids to produce and transmit power in a system.

Extremely large, heavy doors are often driven by hydraulic power sources, which make them better able to resist compression and more efficient at lifting heavy loads. Read more about the doors here: **Hydraulic Doors**.
Step 1: 0.03 mN*m. x (23,000 rpm/0.34 mN*m) = 2,029 rpm (Speed Loss with Load)

Step 2: 23,000 rpm – 2,029 rpm = 20,971 rpm (Motor Speed with New Load)

The motor’s shaft will turn at a rate of 20,971 rpm with a torque load of 0.03 mN*m.

Complete the calculation with a 0.5 mN*m torque load added to motor shaft. Now that you know how to calculate the speed of a motor with a particular load, you’re well equipped to select motors for a variety of applications.
MY THOUGHTS

Student Name

Date
U CONTROL
MEETING 5: CONTROLLING A MOTOR

KEY TERMS

Breadboard (n): A board for making an experimental model of an electric circuit.

Circuit (n): A closed loop that allows electric charges to move within the loop.

Conductor (n): A substance, body, or device that easily lets electricity pass through.

Electric current (n): The rate at which electric charges are flowing.

Ground (n): The process of excess charges moving away from a charged object to a much bigger neutral conductor.

H bridge (n): A type of integrated circuit chip that allows voltage to be applied across a load in either direction.

Inventor’s Toolkit

Hands-On
- Cut wire
- Strip wire
- Breadboard
- Solder (optional)

Minds-On
- Circuitry
- Electricity
- Motor science

Procedure

1. Build a Simple Circuit
2. Controlling the Motion of a Motor
3. Build a Circuit to Control a Motor
4. Self-Assessment

Build a Simple Circuit

1. Review what you’ve learned so far. You’ve learned that a motor converts electrical energy into mechanical energy using wires and magnets. Electricity flows through wires, which creates a magnetic field that either repels or attracts a magnet that is near it. The wires are connected to a shaft, which spins from the constant repelling and attracting of the magnet. You will learn in this meeting how to control the motion of a motor.

2. Read and review the background information on circuits with students, and then have them do the activity that follows with their teams:

 A **circuit** is a closed loop that allows an electric charge to move in the loop. You are making the loop, or closed circuit, when you touch the wire. You cause **electric current** to flow the other way when you reverse...
the battery connections. In other words, you reverse the polarity of the battery. This causes the shaft to spin in the opposite direction.

Polarity is the positive or negative state in which an object reacts to a magnetic, electric or other field. It tells whether electrons are moving toward or away from an object. Batteries are an example of a polarized component. Usually batteries will indicate positive and negative terminals with “+” and “-” symbols. Red and black wires correspond to polarity as well: Red wires are usually used to connect to the positive terminal of a battery, and black wires are usually used to connect to the negative side. Polarity is very important in electronics, so you want to connect polarized components in the correct direction. Otherwise, you may either “short out” your components, or they just won’t work.

Polarity (n): The positive or negative state in which a body or system reacts to a magnetic or electric field.

Relay (n): A device used to transmit a signal to open or close a circuit.

Resistance (n): A material’s tendency to resist the flow of charge.

Resistor (n): A device designed to introduce resistance into an electric circuit.

Short circuit (n): A circuit with low resistance resulting in a high electric current.

SPDT (n): Single pole, double throw switch.

SPST (n): Single pole, single throw switch.

Solder (v): The process of joining metal objects with a fusible metal called solder, solder can be used as both a verb and a noun.

Switch (n): A device for opening or closing an electric circuit.

Transistor (n): A device used to amplify and switch electronic signals.

“A battery has a positive and a negative terminal.”
Work in your teams to do the following:

- Get a DC motor with the wire leads on it, a 9V battery, and a battery snap holder.
- Snap the battery holder onto the 9V battery. The battery is your power source.
- Take a small piece of painter’s tape and wrap it around the shaft of the DC motor.
- Touch the black wire from the motor to the black wire of the battery.
- Touch the red wire from the motor to the red wire from the battery. What happens?
- Reverse the connections by touching the red wire of the motor to the black wire of the battery. What happens now? Repeat by touching the black wire of the motor to the red wire of the battery.

3. You have just created a simple circuit to operate a motor and to change the direction of a motor’s rotation.

Example of a simple circuit.

Credit: Eurah Ko
EXTEND THE LEARNING

Electrical currents like to flow from a higher voltage to a lower voltage. You divert the electrical charge and do something useful, like make a light bulb light or a motor move, when you put a load in the path of an electrical current. There isn’t anything to slow down the current when there is no load, so the current flows freely and can overload the circuit, causing a “short circuit.” This can cause wires to burn up, batteries to drain, or other damage to occur to the power supply. Always be aware of how you connect polarized components. Never directly connect the positive side to the negative side of a polarized power supply (such as a battery) or you will create a short circuit.

INVENTOR SPOTLIGHT

Robert Dennard grew up in rural Texas. He was always looking for better, faster ways to do things—especially laborious chores like chopping wood. He and his colleagues at IBM conceived the scaling theory, a concept that led to denser, less expensive, and faster integrated circuits. These developments then led to the computer industry’s “miniaturnization,” the concept that drives the production of portable computing devices such as laptops and cell phones. He won the $100,000 Lemelson-MIT Lifetime Achievement Award in 2005 for this and other contributions to the microelectronics field. Watch this video of Dennard discussing his life as an inventor: Robert Dennard.

Credit: Alan Orling, IBM on Lemelson-MIT website
CONTROLLING THE MOTION OF A MOTOR

Read the following information and underline the important parts as you read.

You’ve seen that all you need to switch the direction of a motor is to switch the polarity of the current. But how do you make your motor go in different directions without having to disconnect and reconnect wires each time?

What you need to do is integrate circuits with all of these functions in one system. Luckily, inventors and engineers have identified this need and have designed devices such as SPDT (single pole, double throw) switches, H bridges (a type of integrated circuit chip), and breadboards to streamline the process. You can control the motion of the motor for your mechanical door opener without manually switching the wires with these devices. Read on to learn more about each device.

Switches

A switch is a device that controls the flow of a current in a circuit by determining the “open-ness” or “closed-ness” of the current. Two metal pieces inside the switch touch, allowing current to flow, when the switch is at the “on” position. The metal pieces are pushed apart, stopping the flow of current, when the switch is at the “off” position. Think of a light switch: The path of the electric current flows, and the light turns on, when you turn it on. The path of the current is stopped, and the light turns off, when you turn it off.

An SPST (single pole, single throw) switch has two positions—on and off. Pole refers to the number of circuits a switch can control, and throw refers to the number of wiring path choices a switch can provide. The SPST switch can only control one circuit in one wiring path. An SPDT (single pole, double throw) switch is a type of switch that has three positions—on, off, and on. It also controls one circuit, but the circuit has two configurations. It has two types of “on” positions, accommodating two paths for the electric current.

Inside a light switch.

Credit: Wikimedia Commons
Above is an SPST switch and below is an SPDT switch. Note that two contacts are being made (open/closed, off/on) in the SPST switch, and three contacts are involved (open/closed/open, on/off/on) in the SPDT switch.

PATENT PROFILE

William J. Newton was the inventor of the first toggle switch under U.S. Patent # 1233597 A. His “flush switch” allowed a single lever, or toggle, to control multiple circuits in a light switch.
H Bridges

Integrated circuit chips are chips that connect circuits using transistors and relays and other components. A **transistor** is a device used to amplify and switch electronic signals, and a **relay** is a device used to transmit a signal to open or close a circuit. These allow users to combine circuits in one device.

H bridges are a special type of integrated circuit chip. An H bridge works by allowing current to flow across a load in either direction through a series of gates, or switches, that exist inside the device. There are four gates inside an H bridge that control the flow of current. The H bridge in the photo has 16 pins, or metal legs. They are numbered from 1 to 8 down one side of the bridge, and from 9 to 16 up the other side of the bridge. Each pin on the H bridge has a unique position and function in conducting the polarity of a circuit, which is why it is critical that each wire is connected to one of the slots on the row next to the correct pin in the breadboard.

INVENTOR SPOTLIGHT

Marie Van Brittan Brown, a nurse, invented and patented a device for closed-circuit television security. Brown was concerned about home safety and developed a security system using a motorized camera, a monitor, and peepholes. The camera was set up to take images through four peepholes in a door, and would send the images to the monitor. The door could also be unlocked remotely using an electric switch. Brown’s invention was patented in 1969 as number 3,482,037. This became the predecessor of the modern closed-circuit television (CCTV) system used today for surveillance and crime prevention.
Breadboards

Creating circuits can be a burdensome process. Soldering all of those connections can be time-consuming, and if you make a mistake, you have to make those connections all over again. **Breadboards** are devices used to connect wires quickly, temporarily and, most importantly, without soldering.

Breadboards consist of a network of connected rows of metal links covered by a plastic shell. The metal links connect to create one continuous circuit. The rows are numbered to help you keep track of the connections. You create electrical circuits by inserting the wires and pins of electrical devices into the holes on the top of the board. The wire conducts electricity through the metal links in that row.

![Diagram of a breadboard.](https://upload.wikimedia.org/wikipedia/commons/thumb/2/22/2x4_breadboard.png/220px-2x4_breadboard.png)

Metal links are inside the breadboard. A wire inserted into a metal link is electrically connected to other wires or pins inserted into the same metal link.

Credit: Wikimedia Commons

There are power rails on both sides of the board. They have a power column (+) and a ground column (-). Usually, batteries are hooked up to them to provide power to the rows on that specific side of the breadboard.

![Diagram of a breadboard.](https://upload.wikimedia.org/wikipedia/commons/thumb/2/22/2x4_breadboard.png/220px-2x4_breadboard.png)

Diagram of a breadboard.
BUILD A CIRCUIT TO CONTROL A MOTOR
Work with your team to complete the breadboarding activity that follows. You will create an integrated circuit to make your motor move forward and reverse using a switch instead of switching wires, as you did in the simple circuit activity.

HISTORY
Breadboards get their name from—you guessed it—boards used to bake bread! People would use a breadboard and some nails or thumbtacks to connect the wires on the breadboard's wide flat surface when electronic components were big and bulky.

Originally, a "breadboard" was just that, a plank of wood used to cut bread on. Nails or brass push pins were inserted, then the leads of various electronic components were soldered to these pins. This practice evolved into today's "breadboards."

SAFETY
Wear your safety glasses throughout the entire activity.
STEP ONE: Prepare the materials.

- **Attach wire leads to the switch.**
 The SPDT switch has three connections ("legs") for each of the circuits (on/off/on). Cut and strip both ends of two pieces of red stranded wire and one piece of black stranded wire using the wire cutters/strippers. The wire should be 3 to 5 inches long. Attach the red wire to the two outer legs ("on"), and the black to the middle leg ("off") to help keep track of the polarity of the legs.

Watch this video tutorial for best practices on cutting and splitting wire: [Wire Tips](#).

- **Attach the battery snap holder to the 9V battery.** Make sure not to jam the snap holder into the battery to avoid damaging the connection.

- **Insert the four AA batteries into the battery holder.**

- **Prepare your motor.** Read below for detailed instructions.

You’ll be using a servo motor for your door opener. A servo motor has the correct gears to open your door. Your servo motor, however, needs to be adapted for the purposes of your door opener. Servo motors, as you have learned, are like gearhead motors with electronics inside them that allow for precise position control. You won’t need this feature for your mechanical door opener. You will disconnect these electronics to adapt your servo motor. Follow these instructions:

EXTEND THE LEARNING

Wire for electronics projects comes in two styles: solid core and stranded. Stranded wire is made up of bunches of tiny thin wires, and solid wire is one solid piece of wire. Solid core is best for use with breadboards because it is stiff and easier to get into the small entry holes in the breadboard. Stranded wire is best for use with jobs that require more flexible wire.
• Use a screwdriver to remove the screws from the top of the servo motor and remove the top plate. Keep the screws and the plate together and put them aside.
• Locate the green circuit board, the small silver DC motor inside, and the wires connecting them.
• Use wire cutters to cut the two red wires connecting the circuit board to the DC motor, and the three red wires connecting the circuit board to the body of the motor. Don’t cut too much of the jumper wire (red). It could interfere with the electricity exchange. Remove the circuit board completely.

• Remove the wire leads left on the motor. You will be rewiring the motor.
• Cut a two-foot piece of red solid core wire and a two-foot piece of black solid core wire. Strip both ends of each using the wire cutters/strippers. **NOTE:** The length of the wire is important. It will allow you to connect the motor to the breadboard later.
• Use the jewelry pliers to twist the stripped end of the red wire around one of the motor’s posts. Do the same with the black wire around the other post.
A technique called soldering is used to make permanent circuit connections (wire to wire, wire to motor). Soldering is the process of joining metal objects with **solder**, a type of metal. Desoldering is the process of melting the solder to undo the soldered connection. Learn more about soldering here: [Soldering Info](#).

![A soldering iron.](https://via.placeholder.com/150)

Credit: Wikimedia Commons

- Hold the wires together and carefully place the plate over the wires to put the top plate back onto the motor. There is a small gap in the plate that allows the wires to go through. Reattach the plate to the motor using the screws and a screwdriver.

![Place the top plate back onto the motor.](https://via.placeholder.com/150)

Credit: WGBH
Finally, attach the four-arm motor attachment that came with the servo motor by gently pressing it over the servo spur (the tiny, circular knob with many teeth). Press one of the gold screws into the hole on the top of the attachment.

NOTE: The arm you just attached to the motor is a gear. Gears are enormously effective machines when used with motors, as they reduce or magnify force. Gears also can change the direction of axis or rotation, or increase or decrease speed. The arm was attached to another gear, called a spur gear (the tiny, circular knob with many teeth). Energy is transferred and changed as it moves to the spur gear and the arm(s), creating the rotational torque of the motor, which will later be used to move the control arms of your door.

STEP TWO: Set up the breadboard.
Follow these steps to set up the breadboard. You can also use the picture of the fully assembled breadboard (on the separate full page) as a visual guide.

• Place the H bridge in the middle of the breadboard. Insert the pins (silver pegs) of the H bridge into the holes on either side of the ravine (the deep channel in the middle of board). Make sure the little gap is facing up.

Tip
Never jam or push the wires into the breadboard. Jamming the wires can damage the breadboard.
• **Attach the motor to the breadboard.** Take the two motor wire leads and plug them into the rows next to Pins 3 and 6 of the H bridge. The pins on the H bridge are numbered from 1 to 16. Pins 1 to 8 run down the left side of the H bridge, and Pins 9 to 16 run up the right side of the H bridge (Pins 1 and 16 are across from each other at the top). Each pin on the H bridge has a unique position and function in conducting the current in the circuit.

• **Attach the switch to the breadboard.**
 Take the two red wires of the SPDT switch and plug them into the rows next to Pins 2 and 7 of the H bridge. Connect the black wire from the middle leg of the switch to the ground column of the power rail on the left side of the breadboard (marked with a “-” sign) to ground the switch. Make sure the switch is in the center (off) position.

• **Ground the H bridge.** Use small jumper wires (choose black if available) to connect Pins 4 and 5 on the left side of the H bridge to the ground column (“-”) on the left side of the breadboard. Use another set of jumper wires to connect Pins 12 and 13 on the right side of the H bridge to the ground column on the right side of the breadboard.

Tip
Do not connect the battery to the circuit until the circuit connections have been checked.

• **Power the H bridge.** Your H bridge needs power and a ground, just like your motor! This H bridge chip needs about 5V to work, but always check the specs of your chip to identify how much power it needs. You are going to use four alkaline AA batteries, which add up to 6V (1.5V x 4 batteries).

• Plug the black wire from the battery holder into the ground column on the right side of the board and the red wire into the power column (“+”) on the right side. These batteries are the power source for your H bridge.
• Use a long jumper wire to connect Pin 1 of the H bridge to the power column on the right side. Use another jumper wire to connect Pin 16 of the H bridge to the same power column. **Now your H bridge has power.**

• **Power your motor.** H bridges and motors usually require different amounts of power, which is why breadboarding works well. Connect your motor battery to the power and ground columns on the left side of the breadboard. **NOTE:** All power is running *through* the H bridge, although the motor and H bridge are using different sources of power, and the bridge can only handle 1A of current.

• **Connect the two sources of power.** Use a long jumper wire to link the two ground columns across the board.

• **Now you’re ready to give your motor current.** Connect Pin 8 of the H bridge to the motor power column on the left side of the board. Flip the switch and watch your motor move! Move the switch to all three places: on, off, and on. See how the motor spins.

DISCUSS AND SHARE
Discuss with your whole class any challenges and fixes from this activity. Share, as an inventor, how you tested and solved any problems you encountered.
FULLY ASSEMBLED BREADBOARD
MY THOUGHTS

Student Name

Date
KEY TERMS

Input effort (n): The effort or force exerted on an object.

Lever (n): A rigid object used with a pivot point, or fulcrum, to move a load.

Mount (n): A backing, setting, or support onto which something is fixed.

Output effort (n): The effort or force produced by an object.

Pitch (v): To present your idea to someone or to a group to attract their support.

Production sample (n): A more finished version of a working prototype.

Proof of concept (n): A version of a model built to test or demonstrate a concept, sometimes incomplete.

Procedure

- Simple Machines: The Lever
- Build a Mechanical Door Opener
- Discuss the Invention Process (optional)
- Meet Eben Bayer
- Self-Assessment

SIMPLE MACHINES: THE LEVER

1. Read the following information about levers. The control arms of your mechanical door are an example of this type of simple machine. Read the section aloud to students.

2. Ask any questions you have after reading, then try the lever activity and discuss the experience.

The control arms you will use for your door opener are one of the most important simple machines on your door. They function as a **lever**. Levers, as you recall, are one of the six simple machines. Levers have three basic parts: a **fulcrum** (or pivot point), an **input effort** (force), and an **output effort** (load or resistance). Where these parts are in relationship to each other determines how the lever works. The **input effort** (the motor’s power) in the control arms is applied between the fulcrum and the **output effort**. The length of your control arms and where they are placed is important.
Look at the image of the finished door opener you will create below. The input effort is applied to the top arm, which is between the fulcrum and the output effort:

It’s important to note that even though the input effort is applied between the fulcrum and the output effort, it is generated past the fulcrum, where the motor is. We’ve increased the distance between the place where the input effort is generated and the fulcrum by adding the control arms from the motor, allowing the motor to gain more torque.

The control arms to your mechanical door opener function as levers.
Credit: Eurah Ko

Lever Activity
Try closing a door by pushing on it about 3 or 4 inches from the hinges (the fulcrum) to experience how levers are useful. Now try pushing on it near the edge of the door. Quite a difference, right? This is because you increased the distance between the input effort and the fulcrum. You gain more torque (rotational force) to close the door as you increase the distance between the input effort and the fulcrum.
The South Brunswick High School InvenTeam (Monmouth Junction, New Jersey) worked on a passenger-side bicyclist detection system for cars. This device detects objects in the path of an opening car door by using a proximity sensor. The proximity sensor will alert the driver by emitting an alarm if it detects a potential obstruction in the car door's opening radius. This invention will help reduce the risk of accidents and improve the safety of drivers, pedestrians, and cyclists. Read more here: South Brunswick InvenTeam.

BUILD A MECHANICAL DOOR OPENER

1. You will finish constructing your mechanical door opener with your team during this meeting. You’ll be using many of the skills you’ve developed over the course of the unit, including wire stripping and cutting foam insulation.

2. Review each step’s instructions with students before you begin that step. These instructions are in their guides.

3. Refer to the photo of the finished design to get an idea of what you are building.

4. Encourage teamwork with different tasks for everyone. Consider assigning roles within your team to divide up the work.
5. Reflect on your work by sharing your ideas of what worked and what didn’t work when you were building the door. Consider:
 - How could you improve the mechanical door opener?
 - What other designs or other materials could you use?

STEP ONE: Attach the mounts to the door and the door frame.

You’ll need **mounts** to attach the motor and the control arms to the door frame and the door, respectively. You’ll use foam insulation board as mounts. Follow these instructions:

- Cut two pieces, roughly 2-inches x 2-inches square, out of the 1-inch foam insulation.
- Position one piece of insulation at the top right corner of the door. Align the edge of the insulation with the top and side edge of the door. Place it vertically, coming out from the door. This will be your control arm mount.
- Secure the mount with hot glue. Hold it in place for three minutes or so until secure.
- Position the other piece of the foam insulation board flat against the door frame, directly above the top left corner of the door. This will be your motor mount.
- Secure it with hot glue. Hold it in place for three minutes or so until secure.

STEP TWO: Glue the motor to the top mount.

- Position the motor on the door frame mount so that the **gear arms are facing down**, and the **wires are coming out of the top of the motor and down the left side**. (These are the wires that will connect to the breadboard.) Make sure the gears on the motor (the motor arms) clear the door so they do not collide with the door. **Look at the photo to make sure you have the correct position before gluing.**
- Hot glue the side body of the motor to the mount. Hold the mount in place for three minutes or until secure.

TIP

It is important to correctly use the hot glue gun.

Do not press the tip of the hot glue gun directly on to the foam insulation board. This will cause the foam insulation board to melt as seen in the pictures below.

Credit: Eurah Ko

Motor mount.
Credit: WGBH
STEP THREE: Construct the control arms.

- Cut a small square of 1-inch x 1-inch foam insulation board.
- Make an arm shape with the two 9-inch metal ties. Place the foam insulation board between the arms at the fulcrum (the pivot point).
- Using the photo above as a guide, insert a machine screw through the hole in the end of the upper arm. Press it through the foam insulation board (carefully) so it comes out through the end hole in the lower arm. Secure it with a nut. Make sure the arms can open and close easily.

STEP FOUR: Attach the control arms to the motor and the mount on the door.

- Use the wire cutters/strippers to strip the entire length of a 6-inch-long piece of solid core wire.
- Attach the BOTTOM arm to the arm mount with a screw and a bolt while someone is holding the TOP arm. Have someone hold the arms in place as you complete the next steps.

NOTE: It is important that the top arm attaches to the motor, and the bottom arm attaches to the door. See the photo of the completed control arm setup to make sure you’re placing the arms correctly.

- Feed the wire through the hole of the motor arm and the hole closest to the edge in the piece of metal.
- Secure the wire by twisting it with pliers.

STEP FIVE: Attach the motor to the breadboard.

- Attach the two wires of the motor to the breadboard. The wires go into the rows next to Pins 3 and 6 on the left side of the breadboard.
• Reattach the two 4-AA battery holders to the right and left power rails of the breadboard.
• Flip the switch to watch your door open and close!

Feed the wire through both holes.
Credit: WGBH

Press the wire together with jewelry pliers to secure.
Credit: WGBH

The completed control arm setup.
Credit: WGBH
DISCUSSION

Congratulations! You’ve built a mechanical door opener. Discuss the following questions with your team. Record any ideas or drawings in your guide.

- What improvements would you make to the design now that you’ve finished making your door opener? What other uses or applications can you think of?
- Are there any other materials you think would work better?

Check to make sure the control arms are securely fastened before turning the motor on.
Credit: WGBH

A mechanical door opener!
Credit: WGBH
DISCUSS THE INVENTION PROCESS (OPTIONAL)

Read, then discuss as a class the following information about the invention process:

You’ve just made a “proof of concept” prototype, in invention terms. What that means is that you’ve made an early prototype that “proves” your concept (a mechanical/electrical system that opens a door) works! It may not look great—nothing like a real automatic door opener—but it will open a door. The proof of concept prototype allows inventors to experiment with the design before making a more mature working prototype.

The working prototype is usually more refined in appearance and looks more like the intended final product. Inventors use the working prototype for pitching to potential investors, publicizing on social media and crowdsourcing websites, and testing with a wider selection of prospective users.

The final stage is the production sample, which designers use to make sure the factory has created the product according to the CAD or technical drawings and instructions they have been given. It’s the last stop before the invention hits store shelves.

Some automatic doors use an infrared sensor that points down at a sharp angle so the door only opens if you are standing very close to it. Other types of automatic doors have sensors that may open the door accidentally as you walk by, or are triggered by just about anything. A team of researchers at Japan’s University of Electro-Communications and Hokuyo Automatic Company has made major improvements to automatic door design by incorporating 3-D “time-of-flight” technology into the sensor. This technology allows the sensor to estimate the positions, speed, and number of people it senses. The door knows when and how wide to open, which saves time and energy. Read more and watch the researchers introduce their invention: Smarter Automatic Door.
MEET EBEN BAYER

Eben Bayer is what is known as a “green designer” and inventor—someone who develops and invents with sustainability in mind. He is the co-inventor of MycoBond, an organic adhesive that turns agricultural waste into a foam-like material that can be used for packaging and insulation (like foam core board). Eben is committed to creating better materials, and believes that materials should be created with three guiding principles in mind. First, they should be able to be produced almost anywhere on the planet; second, they should require less energy to produce than current materials; and third, they should be able to be disposed of by being reintroduced into nature’s “open-source” recycling system at the end of their life. Eben is also the co-founder of Ecovative, a company “driven to produce materials that are healthier for people, the planet, and for profits.”

Did you have any role models as a young person? Who were they?

My family and friends. Also, Steve Jobs.

Did you do any tinkering or inventing at a young age?

Yes, all the time. I began very early in life by taking things apart (poorly, with hammers), and then later I got better about taking things apart with the correct tools. Eventually I was able to put them back together, too! Two of my favorite projects when I was 10 were building radio transmitters and rockets. Both were fascinating in their own ways.
How did you get interested in alternative materials? Describe your journey.

I have always been interested in natural materials, particularly the beauty of living things, like wood. I think this mostly came from the many opportunities I got to spend in nature, seeing how living systems create solutions for the environments they thrive in.

What advice can you give young people who want to become inventors?

Learn and create! Find out what way you learn best (reading, listening, watching, doing with your hands) and then do as much of that as possible in the subjects that interest you the most. Second, look for problems or things that are missing in the world. Imagine what you would like the world to look like, based on the important unfulfilled needs you see. Go ahead and create a solution using what you know.

What do you do for fun outside of work?

Learn and create!
KEY TERMS

Empathy (n): The ability to understand and share the feelings of others.

INVENTOR’S TOOLKIT

HANDS-ON
- Sketch invention project plan

MINDS-ON
- Research
- Conceptualize an invention to solve a real-world problem
- Empathize with potential users

Procedure

- Introduction to Invention Challenge
- Review Real-World Examples
- Brainstorm Invention Ideas
- Brainstorm Solutions
- Make a Plan
- Self-Assessment

INTRODUCTION TO INVENTION CHALLENGE

Read the following section, which gives you more information about the Invention Challenge.

Sit back and reflect on the new toolkit of skills you have acquired in this unit. You have new minds-on skills such as working in teams and understanding the design process, the prototyping process, mechanical and electrical systems, and motor science. You have gained hands-on skills such as making circuits, cutting and stripping wire, cutting foam insulation, and creating a mechanized door opener.

Invention is centered on **empathy** and fulfilling people’s needs. **How could you use your new skills to solve a real problem?** Your challenge is to select a person or group of people with a need and apply your skills to invent a solution.
You will conceptualize a project. Your ideas have the possibility of becoming InvenTeams projects in future years!

Before you decide WHAT to invent, you must research a real need and determine WHO you will be helping. You can think locally, regionally, nationally, or even internationally. If you choose to look internationally, you can research the needs of a particular country or region to develop a product that may be useful. Perhaps your school already has a partnership with a “sister city” in another country.

For additional information on problems/needs in other countries, explore the [World Bank](https://www.worldbank.org) website.

Review Real-World Examples

Review as a class the examples of purposeful inventions on the following pages.

Example 1

Nuclear engineer and entrepreneur John Buck started a company, Healthy Fingers LLC, that specializes in “germ-safe” inventions to help prevent the spread of germs and diseases in public places. His inventions include a hands-free door and a hands-free doorknob that can be controlled using a person’s wrist or arm. Read more about his inventions here: [Healthy Hands](https://www.healthyhands.com).

Discuss as a Class

Can you think of any apparatus, other than a handle, that would work as a low-cost solution for enhancing a user’s ability to open or close a door? What would the product do? How would it meet a user’s needs? Who might benefit from this solution?

Example 2

Conventional electric motors are typically made of rare earth metals that produce radioactive waste when mined. The company HEVT (Hybrid Electric Vehicles Technologies LLC) developed an affordable and reliable electric motor that uses widely available metals like copper and steel. Their SRM motor (switched reluctance motor) features a higher starting torque (rotational force) and greater efficiency over a wide range of speeds. Read about HEVT’s CEO, Heidi Lubin, and her work promoting the new motor here: [HEVT Motors](https://www.heatvmotors.com).

Discuss as a Class

HEVT’s motors are now being marketed for use in electric bicycles. How could you use these sustainable motors to power another mechanical system? What would you power? Who could benefit from them?
Example 3
School Emergency Door-Locking Mechanism, Benjamin Banneker Academic High School InvenTeam

The students from Benjamin Banneker Academic High School’s InvenTeam (Washington, DC) developed a simple, efficient door-locking mechanism to help schools stay safe during an emergency. A teacher can simply slide the lock over the door arms to quickly barricade the door from inside. The team was motivated to come up with the invention after learning about school shootings in Connecticut and Massachusetts. Members of the Benjamin Banneker InvenTeam had been volunteering at schools, and empathized with the children and families affected by the shootings. Watch this video to learn more about their invention and the invention process: Benjamin Banneker InvenTeam.

Discuss as a Class

How do the materials and design features meet the needs of the intended users? Can you think of some users and their unmet needs? What would you design and build for them? Make a sketch if you have time.

BRAINSTORM INVENTION IDEAS

1. You are going to brainstorm invention ideas, but you need to think first about WHO your invention will help.
2. The most successful brainstorms are the ones in which all ideas, even wacky ones, are proposed, and all ideas are accepted. You never know when a wacky idea will inspire a great invention!

Take a few minutes to brainstorm invention ideas using the blank pages in your student guide. Rejoin your team and share after you’ve come up with ideas. Brainstorm new ideas together. Remember to think of ways to apply the new minds-on and hands-on skills you have learned, such as building circuits and understanding machines and motors, and think of specific users and their needs. For example, could you build a mechanized...
door opener using a pulley instead of a lever? Could you create a low-cost mechanized door opener for farmers in developing countries to keep their animals protected and safe?

BRAINSTORM SOLUTIONS

1. SCAMPER is a process for coming up with solutions. It is based on the notion that many new things are modifications of something that already exists. Each letter in the acronym represents a different way to arrange the characteristics of what is challenging you to come up with new ideas:

 S = Substitute
 (Playing basketball with a softball.)

 C = Combine
 (Toothbrush combined with a pencil to create a new product.)

 A = Adapt
 (How would you eat your spaghetti without a utensil?)

 M = Magnify
 (How would your chair function if its legs were wider and longer?)

 P = Put to other uses
 (Could your fork be used as a comb?)

 E = Eliminate
 (Could you play tennis without a racket?)

 R = Rearrange or Reverse
 (What if shoelaces were placed on the bottom and not the top?)

2. To use the SCAMPER technique, you should first state the problem you would like to solve. Then, ask questions about it using the SCAMPER checklist.

3. Do some personal brainstorming in your guide.

4. Come back together as a team after brainstorming to discuss ideas and streamline them. Select one idea to take to the next step.
MAKE A PLAN

1. Remember that all ideas are good ideas. You should record all ideas in your guide.

2. Ask yourself and your teammates the following questions to make sure you are on target:
 - Is the product offering something useful and unique?
 - Are you excited and motivated to develop your idea?
 - What new tool and/or material skills would you need to learn?
 - If the product meets a local need, would a community group, municipality, university, or company want to get involved with the project?
 - Who will benefit from the invention? Is a user clearly identified?

3. Use the invention worksheet in your guide to document and sketch your idea. This is a version of what high school InvenTeams use in their project proposals.

4. Your team and the others can share ideas with the class in a culminating celebration of your work. You should apply for InvenTeams grants if you want to continue this work!
INVENTION CHALLENGE BRAINSTORM

For this brainstorm, it’s important that you get ALL of your ideas down, especially the wacky ones! You never know when a wacky idea will turn into a great invention.

WHO will you help?

WHAT will you invent?
INVENTION WORKSHEET

Our JV InvenTeam members are:

The product we are inventing is: ___________________________ to ___________________________

(short description of what it does)

It is useful for _______________ because _______________.

(the user) (description of the need or problem)

It is unique because _____________________________

(description of how it’s different from other solutions)

It functions by ________________________________

(description of how it works)

The tools we need are:
______________________ _____________________
______________________ _____________________

The materials we need are: _________ __________ __________ __________ __________
_________ __________ __________ __________ __________
_________ __________ __________ __________ __________

The estimated total cost of our invention will be: $ ________________
What problem do you want to solve?

S = Substitute
(Playing basketball with a softball.)

C = Combine
(Toothbrush combined with a pencil to create a new product.)

A = Adapt
(How would you eat your spaghetti without a utensil?)

M = Magnify
(How would your chair function if the legs were wider and longer?)

P = Put to Other Uses
(Could your fork be used as a comb?)

E = Eliminate
(Could you play tennis without a racket?)

R = Rearrange (or Reverse)
(What if shoelaces were placed on the bottom and not the top?)
Attribution NonCommercial Share Alike License

JUNIOR VARSITY INVENTEAM GUIDES ARE COPYRIGHTS OF M.I.T AND HERBY PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Work in its entirety in unmodified form, along with one or more other contributions, constituting separate and independent works in themselves, are assembled into a collective whole. A work that constitutes a Collective Work will not be considered a Derivative Work (as defined below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the Work and other pre-existing works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Work may be recast, transformed, or adapted, except that a work that constitutes a Collective Work will not be considered a Derivative Work for the purpose of this License. For the avoidance of doubt, where the Work is a musical composition or sound recording, the synchronization of the Work in timed-relation with a moving image ("synching") will be considered a Derivative Work for the purpose of this License.

c. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the terms of this License.

d. "Original Author" means the individual, individuals, entity or entities who created the Work.

e. "Work" means the copyrightable work of authorship offered under the terms of this License.

f. "You" means an individual or entity exercising rights under this License who has not previously violated the terms of this License with respect to the Work, or who has received express permission from the Licensor to exercise rights under this License despite a previous violation.

g. "License Elements" means the following high-level license attributes as selected by Licensor and indicated in the title of this License: Attribution, Noncommercial, ShareAlike.

2. Fair Use Rights.

Nothing in this license is intended to reduce, limit, or restrict any rights arising from fair use, first sale or other limitations on the exclusive rights of the copyright owner under copyright law or other applicable laws.

3. License Grant.

Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in the Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective Works, and to reproduce the Work as incorporated in the Collective Works;

b. to create and reproduce Derivative Works provided that any such Derivative Work, including any translation in any medium, takes reasonable steps to clearly label, demarcate or otherwise identify that changes were made to the original Work. For example, a translation could be marked "The original work was translated from English to Spanish," or a modification could indicate "The original work has been modified."

c. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital audio transmission the Work including as incorporated in Collective Works;

d. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital audio transmission Derivative Works;

e. to distribute copies or phonorecords of, display publicly, perform publicly, and perform publicly by means of a digital audio transmission Derivative Works;

The above rights may be exercised in all media and formats whether now known or hereafter devised. The above rights include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. All rights not expressly granted by Licensor are hereby reserved, including but not limited to the rights set forth in Sections 4(e) and 4(f).

4. Restrictions.

The license granted in Section 3 above is expressly made subject to and limited by the following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally perform the Work only under the terms of this License, and You must include a copy of, or the Uniform Resource Identifier for, this License with every copy
or phonorecord of the Work You distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or impose any terms on the Work that restrict the terms of this License or the ability of a recipient of the Work to exercise the rights granted to that recipient under the terms of the License. You may not sublicense the Work. You must keep intact all notices that refer to this License and to the disclaimer of warranties. When You distribute, publicly display, publicly perform, or publicly digitally perform the Work, You may not impose any technological measures on the Work that restrict the ability of a recipient of the Work from You to exercise the rights granted to that recipient under the terms of the License. This Section 4(a) applies to the Work as incorporated in a Collective Work, but this does not require the Collective Work apart from the Work itself to be made subject to the terms of this License. If You create a Collective Work, upon notice from any Licensor You must, to the extent practicable, remove from the Collective Work any credit as required by Section 4(d), as requested. If You create a Derivative Work, upon notice from any Licensor You must, to the extent practicable, remove from the Derivative Work any credit as required by Section 4(d), as requested.

b. You may distribute, publicly display, publicly perform, or publicly digitally perform a Derivative Work only under: (i) the terms of this License; (ii) a later version of this License with the same License Elements as this License; or, (iii) either the unported Creative Commons license or a Creative Commons license for another jurisdiction (either this or a later license version) that contains the same License Elements as this License (e.g. Attribution-NonCommercial-ShareAlike 3.0 (Unported)) ("the Applicable License"). You must include a copy of, or the Uniform Resource Identifier for, the Applicable License with every copy or phonorecord of each Derivative Work You distribute, publicly display, publicly perform, or publicly digitally perform. You may not offer or impose any terms on the Derivative Works that restrict the terms of the Applicable License or the ability of a recipient of the Work to exercise the rights granted to that recipient under the terms of the Applicable License. You must keep intact all notices that refer to the Applicable License and to the disclaimer of warranties. When You distribute, publicly display, publicly perform, or publicly digitally perform the Derivative Work, You may not impose any technological measures on the Derivative Work that restrict the ability of a recipient of the Derivative Work from You to exercise the rights granted to that recipient under the terms of the Applicable License. This Section 4(b) applies to the Derivative Work as incorporated in a Collective Work, but this does not require the Collective Work apart from the Derivative Work itself to be made subject to the terms of the Applicable License.

c. You may not exercise any of the rights granted to You in Section 3 above in any manner that is primarily intended for or directed toward commercial advantage or private monetary compensation. The exchange of the Work for other copyrighted works by means of digital file-sharing or otherwise shall not be considered to be intended for or directed toward commercial advantage or private monetary compensation, provided there is no payment of any monetary compensation in connection with the exchange of copyrighted works.

d. If You distribute, publicly display, publicly perform, or publicly digitally perform the Work (as defined in Section 1 above) or any Derivative Works (as defined in Section 1 above) or Collective Works (as defined in Section 1 above), You must, unless a request has been made pursuant to Section 4(a), keep intact all copyright notices for the Work and provide, reasonable to the medium or means You are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if supplied, and/or (ii) if the Original Author and/or Licensor designate another party or parties (e.g. a sponsor institute, publishing entity, journal) for attribution ("Attribution Parties") in Licensor's copyright notice, terms of service or by other reasonable means, the name of such party or parties; the title of the Work if supplied; to the extent reasonably practicable, the Uniform Resource Identifier, if any, that Licensor specifies to be associated with the Work, unless such URI does not refer to the copyright notice or licensing information for the Work; and, consistent with Section 3(b) in the case of a Derivative Work, a credit identifying the use of the Work in the Derivative Work (e.g., "French translation of the Work by Original Author," or "Screenplay based on original Work by Original Author"). The credit required by this Section 4(d) may be implemented in any reasonable manner; provided, however, that in the case of a Derivative Work or Collective Work, at a minimum such credit will appear, if a credit for all contributing authors of the Derivative Work or Collective Work appears, then as part of these credits and in a manner at least as prominent as the credits for the other contributing authors. For the avoidance of doubt, You may only use the credit required by this Section for the purpose of attribution in the manner set out above and, by exercising Your rights under this License, You may not implicitly or explicitly assert or imply any connection with, sponsorship or endorsement by the Original Author, Licensor and/or Attribution Parties, as appropriate, of You or Your use of the Work, without the separate, express prior written permission of the Original Author, Licensor and/or Attribution Parties.

e. For the avoidance of doubt, where the Work is a musical composition:
 i. Performance Royalties Under Blanket Licenses. Licensor reserves the exclusive right to collect whether individually or, in the event that Licensor is a member of a performance rights society (e.g. ASCAP, BMI, SESAC), via that society, royalties for the public performance or public digital performance (e.g. webcast) of the Work if that performance is primarily intended for or directed toward commercial advantage or private monetary compensation.
 ii. Mechanical Rights and Statutory Royalties. Licensor reserves the exclusive right to collect, whether individually or via a music rights agency or designated agent (e.g. Harry Fox Agency), royalties for any phonorecord You create...
from the Work ("cover version") and distribute, subject to the compulsory license created by 17 USC Section 115 of the US Copyright Act (or the equivalent in other jurisdictions), if Your distribution of such cover version is primarily intended for or directed toward commercial advantage or private monetary compensation.

f. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where the Work is a sound recording, Licensor reserves the exclusive right to collect, whether individually or via a performance-rights society (e.g. SoundExchange), royalties for the public digital performance (e.g. webcast) of the Work, subject to the compulsory license created by 17 USC Section 114 of the US Copyright Act (or the equivalent in other jurisdictions), if Your public digital performance is primarily intended for or directed toward commercial advantage or private monetary compensation.

5. Representations, Warranties and Disclaimer
UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND ONLY TO THE EXTENT OF ANY RIGHTS HELD IN THE LICENSED WORK BY THE LICENSOR. THE LICENSOR MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MARKETABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED LICENSES TERMINATED PROVIDED SUCH INDIVIDUALS OR ENTITIES REMAIN IN FULL COMPLIANCE WITH THOSE LICENSES. SECTIONS 1, 2, 5, 6, 7, AND 8 WILL SURVIVE ANY TERMINATION OF THIS LICENSE.

a. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the Work under different license terms or to stop distributing the Work at any time; provided, however that any such election will not serve to withdraw this License (or any other license that has been, or is required to be, granted under the terms of this License), and this License will continue in full force and effect unless terminated as stated above.

8. Miscellaneous
a. Each time You distribute or publicly digitally perform the Work (as defined in Section 1 above) or a Collective Work (as defined in Section 1 above), the Licensor offers to the recipient a license to the Work on the same terms and conditions as the license granted to You under this License.

b. Each time You distribute or publicly digitally perform a Derivative Work, Licensor offers to the recipient a license to the original Work on the same terms and conditions as the license granted to You under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the validity or enforceability of the remainder of the terms of this License, and without further action by the parties to this agreement, such provision shall be reformed to the minimum extent necessary to make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived and no breach consented to unless such waiver or consent shall be in writing and signed by the party to be charged with such waiver or consent.

e. This License constitutes the entire agreement between the parties with respect to the Work licensed here. There are no understandings, agreements or representations with respect to the Work not specified here. Licensor shall not be bound by any additional provisions that may appear in any communication from You. This License may not be modified without the mutual written agreement of the Licensor and You.